An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification, including ResNet50, VGG19, and InceptionV4; They were trained and tested on an open-source satellite image dataset to analyze the algorithms' efficiency and performance and correlated the classification accuracy, precisions, recall, and f1-score. The result shows that InceptionV4 gives the best classification accuracy of 97% for cloudy, desert, green areas, and water, followed by VGG19 with approximately 96% and ResNet50 with 93%. The findings proved that the InceptionV4 algorithm is suitable for classifying oil spills and no spill with satellite images on a validated dataset.
This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreA 3D Geological model was generated using an advanced geostatistical method for the Cretaceous reservoir in the Bai Hassan oil field. In this study, a 3D geological model was built based on data from four wells for the petrophysical property distribution of permeability, porosity, water saturation, and NTG by using Petrel 2021 software. The geological model was divided into a structural model and a property model. The geological structures of the cretaceous reservoir in the Bai Hassan oil field represent elongated anticline folds with two faults, which had been clarified in the 3D Structural model. Thirteen formations represent the Cretaceous reservoir which includes (Shiranish, Mashurah, U.kometan, Kometan Shale, L. Kometan, Gulnen
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreTo avoid the negative effects due to inflexibility of the domestic production inresponse to the increase in government consumption expenditure leads to more imports to meet the increase in domestic demand resulting from the increase in government consumption expenditure. Since the Iraqi economy economy yield unilateral depends on oil revenues to finance spending, and the fact government consumer spending is a progressive high flexibility the increase in overall revenues, while being a regressive flexibility is very low in the event of reduced public revenues, and therefore lead to a deficit in the current account position. And that caused the deficit for imbalance are the disruption of the
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreBlockchain is an innovative technology that has gained interest in all sectors in the era of digital transformation where it manages transactions and saves them in a database. With the increasing financial transactions and the rapidly developed society with growing businesses many people looking for the dream of a better financially independent life, stray from large corporations and organizations to form startups and small businesses. Recently, the increasing demand for employees or institutes to prepare and manage contracts, papers, and the verifications process, in addition to human mistakes led to the emergence of a smart contract. The smart contract has been developed to save time and provide more confidence while dealing, as well a
... Show More