Preferred Language
Articles
/
bsj-9767
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification, including ResNet50, VGG19, and InceptionV4; They were trained and tested on an open-source satellite image dataset to analyze the algorithms' efficiency and performance and correlated the classification accuracy, precisions, recall, and f1-score. The result shows that InceptionV4 gives the best classification accuracy of 97% for cloudy, desert, green areas, and water, followed by VGG19 with approximately 96% and ResNet50 with 93%. The findings proved that the InceptionV4 algorithm is suitable for classifying oil spills and no spill with satellite images on a validated dataset.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms
...Show More Authors

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th

... Show More
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
An Automated Classification of Mammals and Reptiles Animal Classes Using Deep Learning
...Show More Authors

Detection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Telecom Churn Prediction based on Deep Learning Approach
...Show More Authors

      The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than othe

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Dec 19 2024
Journal Name
Al–bahith Al–a'alami
Adopting the public on satellite channels
...Show More Authors

The importance of television has emerged as an effective and influential force in the lives of societies and peoples, And not just a professional media since the fifties of the twentieth century, It was used as a platform to achieve the goals and objectives of the media and politics for governments, agencies and individuals in different countries of the world, Using many methods, methods and techniques that later became important major subjects and curricula and a scientific specialization that was founded for him to study and teach in most international universities, The media, especially television and satellite channels, play an active and significant role in managing crises and conflicts and directing them through the methods of deal

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of Educational And Psychological Researches
Teaching techniques due to the Brain-based learning theory among math teachers
...Show More Authors

The purpose of the study is to identify the teaching techniques that mathematics' teachers use due to the Brain-based learning theory. The sample is composed of (90) teacher: (50) male, (40) female. The results have shown no significant differences between male and female responses' mean. Additionally, through the observation of author, he found a lack of using Brain-based learning techniques. Thus, the researcher recommend that it is necessary to involve teachers in remedial courses to enhance their ability to create a classroom that raise up brain-based learning skills.  

View Publication Preview PDF
Publication Date
Tue Jan 30 2018
Journal Name
Iraqi Journal Of Science
Improve the Spatial Resolution of Multispectral satellite Image using Different Image Sharpening Techniques
...Show More Authors

The process of combining the significant information from a series of images into a single image called image sharpening or image fusing, where the resultant fused image will be having more spatial and spectral information than any of the input images. in this research two images of the same place in different spatial resolution have been used the first one was panchromatic and the second image was multispectral with spatial resolution 0.5m and 2 m respectively. These images were captured by world view-2 sensor. This research resent four pan sharpening methods like (HSV, Brovey (color normalizes) , Gram shmidt and PCA)these methods were used to combine the adopted images to get multispectral image

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 24 2017
Journal Name
Journal Of Engineering
Composite Techniques Based Color Image Compression
...Show More Authors

Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3 rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM) in M technique wh

... Show More
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Improving Accuracy in Human Age Classification Using Ensemble Learning Techniques
...Show More Authors

     Age is a predominant parameter for arbitrating an individual, for security and access concerns of the data that exist in cyber space. Nowadays we find a rapid growth in unethical practices from youngsters as well as skilled cyber users. Facial image renders a variety of information that can be used, when processed to ascertain the age of individuals. In this paper, local facial features are considered to predict the age group, where local Binary Pattern (LBP) is extracted from four regions of facial images. The prominent areas where wrinkles are developed naturally in human as age increases are taken for feature extraction. Further these feature vectors are subjected to  ensemble techniques that increases th

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref