A new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducted tests on ten single-objective functions from the 2019 benchmark functions of the Evolutionary Computation (CEC), as well as twenty-four single-objective functions from the 2022 CEC benchmark functions, in addition to four engineering problems. Seven comparative algorithms were utilized: the Differential Evolution Algorithm (DE), Sparrow Search Algorithm (SSA), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), Butterfly Optimization Algorithm (BOA), Lion Swarm Optimization (LSO), and Golden Jackal Optimization (GJO). The results of these diverse experiments were compared in terms of accuracy and convergence curve speed. The findings suggest that SBOA is a straightforward and viable approach that, overall, outperforms the aforementioned algorithms.
Tannin acyl hydrolase as the common name of tannase is an inducible extracellular enzyme that causes the hydrolysis of galloyl ester and depside bonds in tannins, yielding gallic acid and glucose. The main objective of this study is to find a novel gallic acid and tannase produced by
The biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show More This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
يعد التقطيع الصوري من الاهداف الرئيسة والضرورية في المعالجات الصورية للصور الرقمية، فهو يسعى الى تجزئة الصور المدروسة الى مناطق متعددة اكثر نفعاً تلخص فيها المناطق ذات الافادة لصور الاقمار الصناعية، وهي صور متعددة الاطياف ومجهزة من الاقمار الصناعية باستخدام مبدأ الاستشعار عن بعد والذي اصبح من المفاهيم المهمة التي تُعتمد تطبيقاته في اغلب ضروريات الحياة اليومية، وخاصة بعد التطورات المتسارعة التي شهد
... Show MoreThe paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreAbstract
Although the rapid development in reverse engineering techniques, 3D laser scanners can be considered the modern technology used to digitize the 3D objects, but some troubles may be associate this process due to the environmental noises and limitation of the used scanners. So, in the present paper a data pre-processing algorithm has been proposed to obtain the necessary geometric features and mathematical representation of scanned object from its point cloud which obtained using 3D laser scanner (Matter and Form) through isolating the noised points. The proposed algorithm based on continuous calculations of chord angle between each adjacent pair of points in point cloud. A MATLAB program has been built t
... Show MoreIdentification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed
... Show More