A new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducted tests on ten single-objective functions from the 2019 benchmark functions of the Evolutionary Computation (CEC), as well as twenty-four single-objective functions from the 2022 CEC benchmark functions, in addition to four engineering problems. Seven comparative algorithms were utilized: the Differential Evolution Algorithm (DE), Sparrow Search Algorithm (SSA), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), Butterfly Optimization Algorithm (BOA), Lion Swarm Optimization (LSO), and Golden Jackal Optimization (GJO). The results of these diverse experiments were compared in terms of accuracy and convergence curve speed. The findings suggest that SBOA is a straightforward and viable approach that, overall, outperforms the aforementioned algorithms.
Histone deacetylase inhibitors with zinc binding groups often exhibit drawbacks like non-selectivity or toxic effects. Thus, there are continuous efforts to modify the currently available inhibitors or to discover new derivatives to overcome these problems. One approach is to synthesize new compounds with novel zinc binding groups. The present study describes the utilization of acyl thiourea functionality, known to possess the ability to complex with metals, to be a novel zinc binding group incorporated into the designed histone deacetylase inhibitors. N-adipoyl monoanilide thiourea (4) and N-pimeloyl monoanilide thiourea (5) have been synthesized and characterized successfully. They showed inhibition of growth of human colon adenoc
... Show MoreAbstruct
This recearch is about studying the novel (doorstep’s women) by the Iraqi
narrator Hadia Hussian, and I choose Semiolog as a Curriculum for this
critical approach, because I think that this Semiotic curriculum has the ability
to read the Subjects and the narrative constructions. Which form the structure
of the novel starting from the little to the characters.
The focus is on many narrative constructions in the novel we have
studied the semiology of the tittle, the semiology of the cover, of the color, the
names of the characters and the semiology of the female characters.
First the focus of the novel is on the women’s characters because most
of it’s characters are women. Secondly because these
This paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show MoreThe optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of
... Show MoreString matching is seen as one of the essential problems in computer science. A variety of computer applications provide the string matching service for their end users. The remarkable boost in the number of data that is created and kept by modern computational devices influences researchers to obtain even more powerful methods for coping with this problem. In this research, the Quick Search string matching algorithm are adopted to be implemented under the multi-core environment using OpenMP directive which can be employed to reduce the overall execution time of the program. English text, Proteins and DNA data types are utilized to examine the effect of parallelization and implementation of Quick Search string matching algorithm on multi-co
... Show MoreSeveral attempts have been made to modify the quasi-Newton condition in order to obtain rapid convergence with complete properties (symmetric and positive definite) of the inverse of Hessian matrix (second derivative of the objective function). There are many unconstrained optimization methods that do not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive definite prope
... Show MoreIn this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
Abstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.