Preferred Language
Articles
/
bsj-9756
Hybrid CNN-based Recommendation System

Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness of factorization machines for recommendation tasks. The present work introduces a novel hybrid deep factorization machine (FM) model, referred to as ConvFM. The ConvFM model use a combination of feature extraction and convolutional neural networks (CNNs) to extract features from both individuals and things, namely movies. Following this, the proposed model employs a methodology known as factorization machines, which use the FM algorithm. The focus of the CNN is on the extraction of features, which has resulted in a notable improvement in performance. In order to enhance the accuracy of predictions and address the challenges posed by sparsity, the proposed model incorporates both the extracted attributes and explicit interactions between items and users. This paper presents the experimental procedures and outcomes conducted on the Movie Lens dataset. In this discussion, we engage in an analysis of our research outcomes followed by provide recommendations for further action.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 14 2022
Journal Name
Journal Of Optical Communications
Deployment of multiservice code in FSO-based hybrid subcarrier system
Abstract<p>This research aims to investigate and improve multi-user free space optic systems (FSO) based on a hybrid subcarrier multiplexing spectral amplitude coding-optical code division multiple access (SCM-SAC-OCDMA) technique using MS code with a direct decoding technique. The performance is observed under different weather conditions including clear, rain, and haze conditions. The investigation includes analyzing the proposed system mathematically using MATLAB and OptiSystem software. The simulation is carried out using a laser diode. Furthermore, the performances of the MS code in terms of angles of bit rate, beam divergence and noise are evaluated based on bit error rate (BER), received </p> ... Show More
View Publication
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Diagnose COVID-19 by using hybrid CNN-RNN for Chest X-ray

<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121

... Show More
View Publication
Scopus (16)
Crossref (2)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
3-D Packing in Container using Teaching Learning Based Optimization Algorithm

The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Implementation of Transmitter Zigbee System based on Wireless Sensor Network of IEEE 802.15.4 Standard

Abstract

 

Zigbee is considered to be one of the wireless sensor networks (WSNs) designed for short-range communications applications. It follows IEEE 802.15.4 specifications that aim to design networks with lowest cost and power consuming in addition to the minimum possible data rate. In this paper, a transmitter Zigbee system is designed based on PHY layer specifications of this standard. The modulation technique applied in this design is the offset quadrature phase shift keying (OQPSK) with half sine pulse-shaping for achieving a minimum possible amount of phase transitions. In addition, the applied spreading technique is direct sequence spread spectrum (DSSS) technique, which has

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Improving the efficiency and security of passport control processes at airports by using the R-CNN object detection model

The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
IoT System on Dynamic Fish Feeder Based on Fish Existence for Agriculture Aquaponic Breeders

Maintaining and breeding fish in a pond are a crucial task for a large fish breeder. The main issues for fish breeders are pond management such as the production of food for fishes and to maintain the pond water quality. The dynamic or technological system for breeders has been invented and becomes important to get maximum profit return for aquaponic breeders in maintaining fishes. This research presents a developed prototype of a dynamic fish feeder based on fish existence. The dynamic fish feeder is programmed to feed where sensors detected the fish's existence. A microcontroller board NodeMCU ESP8266 is programmed for the developed h

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Jul 11 2023
Journal Name
Journal Of Educational And Psychological Researches
Functional Engagement and Its Relationship to Hope-Based Thinking for Kindergarten Teachers

The research aims to identify the level of functional engagement and hope-based thinking of kindergarten teachers, identify if there is a significant difference in functional engagement and hope-based thinking in terms of specialization and years of service for kindergarten teachers, identify if there is a significant correlation between functional engagement and hope-based thinking of kindergarten teachers. The current research is determined by kindergarten teachers in the Second Rusafa Baghdad Education Directorate for the academic year (2022-2023). In order to achieve the objectives of the research, the researcher prepared a functional engagement scale, which consists of (45) items in three areas: Perceptual and functional engagement

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Coronavirus Disease Diagnosis, Care and Prevention (COVID-19) Based on Decision Support System

              Automated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breat

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Hybrid Intrusion Detection System based on DNA Encoding, Teiresias Algorithm and Clustering Method

Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15

... Show More
View Publication
Crossref (2)
Crossref