Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness of factorization machines for recommendation tasks. The present work introduces a novel hybrid deep factorization machine (FM) model, referred to as ConvFM. The ConvFM model use a combination of feature extraction and convolutional neural networks (CNNs) to extract features from both individuals and things, namely movies. Following this, the proposed model employs a methodology known as factorization machines, which use the FM algorithm. The focus of the CNN is on the extraction of features, which has resulted in a notable improvement in performance. In order to enhance the accuracy of predictions and address the challenges posed by sparsity, the proposed model incorporates both the extracted attributes and explicit interactions between items and users. This paper presents the experimental procedures and outcomes conducted on the Movie Lens dataset. In this discussion, we engage in an analysis of our research outcomes followed by provide recommendations for further action.
Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreThe electronic payment systems are considered the most important infrastructure for the work of banks, particularly after a steady and remarkable development in information and communication technology, Which created the reality of the work of the infrastructure for these systems and these systems also become one of the most important components of infrastructure for the work of banks, cause it is one of the most important channels through which the transfer of cash, financial instruments between financial institutions in general and banking in particular.
In order to achieve the objectives of the research, the most important to identify the concept of electronic payment systems, and its divisions, and th
... Show MoreThe research studied and analyzed the hybrid parallel-series systems of asymmetrical components by applying different experiments of simulations used to estimate the reliability function of those systems through the use of the maximum likelihood method as well as the Bayes standard method via both symmetrical and asymmetrical loss functions following Rayleigh distribution and Informative Prior distribution. The simulation experiments included different sizes of samples and default parameters which were then compared with one another depending on Square Error averages. Following that was the application of Bayes standard method by the Entropy Loss function that proved successful throughout the experimental side in finding the reliability fun
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThe current research seeks to identify the role of the marketing intelligence system in its dimensions (customer intelligence, market intelligence, competitor intelligence, insurance product intelligence, sales representatives) and its reflection on improving the quality of the insurance service provided by the National Insurance Company represented in its dimensions (reliability, response, tangibility, Safety, the spirit of empathy, communication) adopted in the current research, and based on that, the research came as an attempt to find out the extent to which the research sample company can apply the approach of the marketing intelligence system and its impact on improving the quality of the insurance service provided to custo
... Show MoreThis research aims at identifying the system of applying the QRcode system for acquisition of chemistry by first class female students studying at intermediate schools knowledge and its effect on creative thinking. The research sample consisted of (63) female students in one of the intermediate schools in Baghdad/Iraq using two equivalents experimental and control groups. The scientific context used was based on the chemistry text book related to the periodic table, (Metals) for the first group of students and Alkaline metals,Nonmetals, Metalloides) for the second group. The research methodology employed consisted of the followings :Measuring students acquisition using (35) issues. The results were verified for their face validity and obtai
... Show MoreThe research acquires its importance by motivating the behavioural side of the employees to apply modern technology in the work, because of its great importance in increasing the efficiency of employees’ performance and excellence. The research was based on two main hypotheses to show the relationship and impact between the variables through the adoption of a questionnaire to collect data and information related to the research, which consisted of (50) people from administrators working at different levels, based on personal interviews and field visits to collect research data. The data collection process was subjected to statistical analysis using the statistical program (SPSS) (Statistical package for social science) to reach
... Show MoreThe Accommodation industry in Iraq suffers from many problems, especially after 2003, when the Accommodation industry was exposed to many crises due to the security and political situation in Iraq, which negatively affected the administrative operations inside the industry and created many problems, the most important of which are deterioration, high costs and poor performance, so some hotel administrations sought To find alternative solutions that help in the advancement of hotels, one of the proposals is to go to technology, as technology is currently one of the most important solutions to solve large complex problems, as the world has turned to automation to solve complex problems such as increasing production, reducing costs, and rai
... Show MoreSocial media is known as detectors platform that are used to measure the activities of the users in the real world. However, the huge and unfiltered feed of messages posted on social media trigger social warnings, particularly when these messages contain hate speech towards specific individual or community. The negative effect of these messages on individuals or the society at large is of great concern to governments and non-governmental organizations. Word clouds provide a simple and efficient means of visually transferring the most common words from text documents. This research aims to develop a word cloud model based on hateful words on online social media environment such as Google News. Several steps are involved including data acq
... Show MoreAccording to different types of democracy Indexes, hybrid regimes or those in the gray zone, make up the majority of regime transformations in the third wave of democracy. However, after nearly three decades, conceptual confusion about hybrid regimes persists and grows, while obstructing the accumulation of knowledge about the nature of hybrid regimes. This leads to significant political repercussions for democratization. This Paper attempts to provide a clearer view of different and overlapping concepts and classifications in this complex field, and sustain development in literature on democratic transformation. To achieve this, we followed an approach based on the classification of concepts and terms in three distinct categories, b
... Show More