Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness of factorization machines for recommendation tasks. The present work introduces a novel hybrid deep factorization machine (FM) model, referred to as ConvFM. The ConvFM model use a combination of feature extraction and convolutional neural networks (CNNs) to extract features from both individuals and things, namely movies. Following this, the proposed model employs a methodology known as factorization machines, which use the FM algorithm. The focus of the CNN is on the extraction of features, which has resulted in a notable improvement in performance. In order to enhance the accuracy of predictions and address the challenges posed by sparsity, the proposed model incorporates both the extracted attributes and explicit interactions between items and users. This paper presents the experimental procedures and outcomes conducted on the Movie Lens dataset. In this discussion, we engage in an analysis of our research outcomes followed by provide recommendations for further action.
The aim of the present study was to develop theophylline (TP) inhalable sustained delivery system by preparing solid lipid microparticles using glyceryl behenate (GB) and poloxamer 188 (PX) as a lipid carrier and a surfactant respectively. The method involves loading TP nanoparticles into the lipid using high shear homogenization – ultrasonication technique followed by lyophilization. The compositional variations and interactions were evaluated using response surface methodology, a Box – Behnken design of experiment (DOE). The DOE constructed using TP (X1), GB (X2) and PX (X3) levels as independent factors. Responses measured were the entrapment efficiency (% EE) (Y1), mass median
... Show MoreThis study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepare
... Show MoreThis study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepared atenolol beads remained f
... Show MoreSoil wetted pattern from a subsurface drip plays great importance in the design of subsurface drip irrigation (SDI) system for delivering the required water directly to the roots of the plant. An equation to estimate the dimensions of the wetted area in soil are taking into account water uptake by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, three soil textures namely loamy sand, sandy loam, and loam soil were used with three different types of crops tomato, pepper, and cucumber, respectively, and different values of drip discharge, drip depth, and initial soil moisture content were proposed. The soil wetting patterns were obtained at every thirty minutes for a total time of irrigation equ
... Show MoreIt is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.
... Show MoreRate of zinc consumption during the cathodic protection of copper pipeline which carries saline water was measured by weight loss technique in the absence and presence of bacteria. Variables studied were solution flow rate, temperature, time and NaCl concentration. It was found that within the present range of variables; the rate of zinc consumption increases with the increase of all operating conditions. The presence of bacteria increases the zinc consumption. Fourth order multi-term model and one-term model were suggested to represent the consumption data. Nonlinear regression analysis was used to estimate the coefficients of these models, while statistical analysis was used to determine the effect of each coefficient. Both models were re
... Show MoreRenewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te
... Show More