Most companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Making (MCDM) methods, the Analytic Hierarchy Process (AHP) is preferred for handling complicated decision-making challenges using several criteria. The Consistency Ratio (CR) scores were used to examine pair-wise comparisons to evaluate the AHP. This study used two judgment scales to get the most consistent judgment. Firstly, the Saaty judgment scale (SS), then the Generalized Balanced Scale (GBS). It investigated whether two different AHP judgment scales would affect decision-making. The main criteria for prioritizing pre-processing techniques in sentiment analysis are Punctuation, Spelling, Number, and Context. These four criteria also contain sub-criteria. GBS pair-wise comparisons are closer to the CR value than SS, reducing the alternatives’ weight ratios. This paper explains how AHP aids logical decision-making. Prioritizing pre-processing techniques with AHP can be a paradigm for other sentiment analysis stages. In short, this paper adds another contribution to the Big Data Analytics domain.
Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreIn this study, dynamic encryption techniques are explored as an image cipher method to generate S-boxes similar to AES S-boxes with the help of a private key belonging to the user and enable images to be encrypted or decrypted using S-boxes. This study consists of two stages: the dynamic generation of the S-box method and the encryption-decryption method. S-boxes should have a non-linear structure, and for this reason, K/DSA (Knutt Durstenfeld Shuffle Algorithm), which is one of the pseudo-random techniques, is used to generate S-boxes dynamically. The biggest advantage of this approach is the production of the inverted S-box with the S-box. Compared to the methods in the literature, the need to store the S-box is eliminated. Also, the fabr
... Show MoreAbstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreCurrently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Different
... Show MoreDue to the easily access to the satellite images, Google Earth (GE) images have become more popular than other online virtual globes. However, the popularity of GE is not an indication of its accuracy. A considerable amount of literature has been published on evaluating the positional accuracy of GE data; however there are few studies which have investigated the subject of improving the GE accuracy. In this paper, a practical method for enhancing the horizontal positional accuracy of GE is suggested by establishing ten reference points, in University of Baghdad main campus, using different Global Navigation Satellite System (GNSS) observation techniques: Rapid Static, Post-Processing Kinematic, and Network. Then, the GE image for the study
... Show MoreThe present study investigated the impact of fuel kind on the emitted emissions at the idling period. Three types of available fuels in Iraq were tested. The tests conducted on ordinary gasoline with an octane number of 82, premium gasoline with an octane number of 92, and M20 (consist of 20% methanol and 80% regular gasoline). The 2 liters Mercedes-Benz engine was used in the experiments.
The results showed that engine operation at idle speed emits high levels of CO, CO2, HC, NOx and noise. The produced emission levels depend highly on fuel type. The premium gasoline (ON=92) represents the lower emissions level except for noise at all idling speed. Adding methanol to ordinary gasoline (ON=82) showed high levels of emi
... Show More