Preferred Language
Articles
/
bsj-9740
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (6)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
The Computational Fluid Dynamic Simulations for Gangrene Disease in Diabetic Foot
...Show More Authors

The diabetic foot is considered one of the long term diabetes complications caused by a defect in blood vessel and nerve system. This requires dealing with diabetic foot with professional medical care, so as to prevent its development in advanced stages which could end to gangrene and amputation of the foot. This study has been initiated through follow-up of twelve patients with diabetes and the presence various occlusions in lower limb artery. One patient from them was chosen for investigation, this patient has stenosis in popliteal artery and presence multiple stenosis in superficial femoral artery. This study based on analysis present case of patient and prediction for progress stenosis in superficial femoral artery till arrive semi t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Improvement of the Fault Tolerance in IoT Based Positioning Systems by Applying for Redundancy in the Controller Layer
...Show More Authors

In recent years, the positioning applications of Internet-of-Things (IoT) based systems have grown increasingly popular, and are found to be useful in tracking the daily activities of children, the elderly and vehicle tracking. It can be argued that the data obtained from GPS based systems may contain error, hence taking these factors into account, the proposed method for this study is based on the application of IoT-based positioning and the replacement of using IoT instead of GPS.  This cannot, however, be a reason for not using the GPS, and in order to enhance the reliability, a parallel combination of the modern system and traditional methods simultaneously can be applied. Although GPS signals can only be accessed in open spaces, GP

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Predict the Laser Power and Recovery Period in Treatment by Endovenous Laser Ablation (EVLA)
...Show More Authors

            Eight patients (3 male and 5 female) were treated in this study by Endovenous Laser Ablation (EVLA); Mathematical models are proposed to estimate the applied laser power and to assess the recovery period. The estimations of the applied laser power and recovery period in these models will be depended mainly on the diameter of the incompetent vein.  In addition, Excel Program was utilized to find the proposed models.  A 1470 nm diode laser up to 15W continuous power (CW) was used in the treatment of venous ulcers by EVLA procedure. Following up by duplex ultrasound was started in the 1st week after the first session until the vein is completely closed. The present study concluded that the relationship both between

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (38)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Hepatocellular Carcinoma Prediction and early Diagnosis of Hepatitis B and C viral infection using miR-122 and miR-223 in a sample of Iraqi patients.
...Show More Authors

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. Therefore, it is critical for researchers to understand molecular biology in greater depth.  In several diseases including cancer, abnormal miRNA expression has been linked to apoptosis, proliferation, differentiation, and metastasis. Many miRNAs have been studied in relation to cancer, including miR-122, miR-223, and others. Hepatitis B and C viruses are the most important global risk factors for HCC. This study is intended to test whether serum miRNAs serve as a potential biomarker for both HCC and viral infections HBV and C. The expression of miRNA in 64 serum samples was analyzed by RT-qPCR. Compared to healthy volunteers, HCC patients' sera expre

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 06 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Nurses' Job Satisfaction in Respiratory Isolation Units of Coronavirus Disease
...Show More Authors

Abstract

Objective(s): To assess the job satisfaction during of covid-19 among the nurses in respiratory isolation units of coronavirus disease.

Methodology: A descriptive cross-sectional design was carried out in four hospitals at isolation units of coronavirus disease from the period (21th December, 2021 to 27th January, 2022). A non-probability (convenience) sampling method consists of (300) nurse was selected convenience based on the study criteria. The tool used to measure the job satisfaction is Job satisfaction scale for clinical nursing (JSS-CN). This tool consists of two parts, the first part is for demographic information and consists of 8 items, and the second

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Improving the Network Lifetime in Wireless Sensor Network for Internet of Thing Applications
...Show More Authors

Mobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Oct 04 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The

... Show More
Publication Date
Tue Oct 18 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM

... Show More
Scopus (14)
Crossref (15)
Scopus Clarivate Crossref