Preferred Language
Articles
/
bsj-9740
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Comparison of Estimation Sonic Shear Wave Time Using Empirical Correlations and Artificial Neural Network
...Show More Authors

Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Nov 02 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Images Segmentation Based on Fast Otsu Method Implementing on Various Edge Detection Operators
...Show More Authors

Publication Date
Fri May 17 2019
Journal Name
Lecture Notes In Networks And Systems
Features Selection for Intrusion Detection System Based on DNA Encoding
...Show More Authors

Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system

... Show More
Scopus (5)
Scopus
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Molecular Identification of Fusobacterium Isolates and limitation of Biofilm Formation Adhesion Gene (fadA) in Dental Outpatients
...Show More Authors

 Fusobacterium are compulsory anaerobic gram-negative bacteria, long thin with pointed ends, it causes several illnesses to humans like pocket lesion gingivitis and periodontal disease; therefore our study is constructed on molecular identification and detection of the fadA gene which is responsible for bacterial biofilm formation. In this study, 10.2% Fusobacterium spp. were isolated from pocket lesion gingivitis. The isolates underwent identification depending on several tests under anaerobic conditions and biochemical reactions. All isolates were sensitive to Imipenem (IPM10) 42.7mm/disk, Ciprofloxacin (CIP10) 27.2mm/disk and Erythromycin (E15) 25mm/disk, respectively. 100% of

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Design and Analysis WIMAX Network Based on Coverage Planning
...Show More Authors

In this paper, wireless network is planned; the network is predicated on the IEEE 802.16e standardization by WIMAX. The targets of this paper are coverage maximizing, service and low operational fees. WIMAX is planning through three approaches. In approach one; the WIMAX network coverage is major for extension of cell coverage, the best sites (with Band Width (BW) of 5MHz, 20MHZ per sector and four sectors per each cell). In approach two, Interference analysis in CNIR mode. In approach three of the planning, Quality of Services (QoS) is tested and evaluated. ATDI ICS software (Interference Cancellation System) using to perform styling. it shows results in planning area covered 90.49% of the Baghdad City and used 1000 mob

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Environmental Technology & Innovation
The use of Artificial Neural Network (ANN) for modeling of Cu (II) ion removal from aqueous solution by flotation and sorptive flotation process
...Show More Authors

View Publication
Scopus (32)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Fuzzy Wavenet (FWN) classifier for medical images
...Show More Authors

 

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.

  In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.

&n

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 28 2023
Journal Name
Journal Of Planner And Development
Emergency of Edge city between Regeneration and Acclimatization Urban
...Show More Authors

           In the nineteenth century, a new type of cities appeared, known as new cities located on the edges of major cities, and these cities began to  decentralization, urban studies turned to this type of cities to find out the most important reasons for the emergence of new cities and find out what those cities will become . Therefore, we will discuss in this research how the urban emergence of these cities (edge cities) occurs, so the research formulates its problem : The need to know the stages that edge cities go through, ending with their emergence, and the mechanisms that cities take within their context  ( regeneration or adaptation ), Assuming that edge cities are a

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 25 2015
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Subject Independent Facial Emotion Classification Using Geometric Based Features
...Show More Authors

Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles

... Show More
View Publication Preview PDF
Crossref (1)
Crossref