Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an effective tool for reducing both the dependency problem and the wrapping effect. By construction, Taylor model methods appear particularly suitable for integrating nonlinear ODEs. In this paper, we analyze Taylor model based integration of ODEs and compare Taylor model with traditional enclosure methods for IVPs for ODEs. More advanced Taylor model integration methods are discussed in the algorithm (1). For clarity, we summarize the major steps of the naive Taylor model method as algorithm 1.
Nanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery (EOR) and carbon geostorage. At ambient conditions, nanoparticles can effectively alter the wettability of the strongly oil-wet rocks to water-wet. However, the reservoir conditions present the greatest challenge for the success of this application at the field scale. In this work, the performance of anionic surfactant-silica nanoparticle formulation on wettability alteration of oil-wet carbonate surface at reservoir conditions was investigated. A high-pressure temperature vessel was used to apply nano-modification of oil-wet
... Show MoreMonetary policy occupies a prominent role in achieving monetary stability by adjusting the growth rates of the number of available means of payment in line with changes in the size of the gross domestic product in the country and expressed by the monetary stability coefficient agreed upon by the International Monetary Fund, a term that hides the fact that there is a rate of change in the volume of commodity or real production which expresses the levels of aggregate supply in the economy, which corresponds to the quantities of cash in circulation, which represent a net purchasing power and stimulate aggregate demand, which completes the picture of the existence of the market mechanism, expressed by the monetary or economic stability
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
Catalytic reforming of naphtha occupies an important issue in refineries for obtaining high octane gasoline and aromatic compounds, which are the basic materials of petrochemical industries. In this study, a novel of design parameters for industrial continuous catalytic reforming reactors of naphtha is proposed to increase the aromatics and hydrogen productions. Improving a rigorous mathematical model for industrial catalytic reactors of naphtha is studied here based on industrial data applying a new kinetic and deactivation model. The optimal design variables are obtained utilizing the optimization process in order to build the model with high accuracy and such design parameters are then applied to get the best configuration of this pro
... Show MoreDistribution of light intensity in the flat photobioreactor for microalgae cultivation as a step design for production of bio-renewable energy was addressed in the current study. Five sizes of bioreactors with specific distances from the main light source were adopted as independent variables in experiential design model. The results showed that the bioreactor’s location according to the light source, determines the nature of light intensity distribution in the reactor body. However, the cross-section area plays an important role in determining the suitable location of reactor to achieve required light homogeneity. This area could change even the expected response of the light passing through the reactor if Beer-Lambert's law is adopted.
... Show MoreThe high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:
Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alk)
The developed model will aid the predictiv
... Show MoreThe research aimed to modeling a structural equation for tourist attraction factors in Asir Region. The research population is the people in the region, and a simple random sample of 332 individuals were selected. The factor analysis as a reliable statistical method in this phenomenon was used to modeling and testing the structural model of tourism, and analyzing the data by using SPSS and AMOS statistical computerized programs. The study reached a number of results, the most important of them are: the tourist attraction factors model consists of five factors which explain 69.3% of the total variance. These are: the provision of tourist services, social and historic factors, mountains, weather and natural parks. And the differenc
... Show MoreThis research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri
Dust storms are typical in arid and semi-arid regions such as the Middle East; the frequency and severity of dust storms have grown dramatically in Iraq in recent years. This paper identifies the dust storm sources in Iraq using remotely sensed data from Meteosat-spinning enhanced visible and infrared imager (SEVIRI) bands. Extracted combined satellite images and simulated frontal dust storm trajectories, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, are used to identify the most influential sources in the Middle East and Iraq. Out of 132 dust storms in Iraq during 2020–2023, the most frequent occurred in the spring and summer. A dust source frequency percentage map (DSFPM) is generated using ArcGIS so
... Show MoreThe ionospheric characteristics exhibit significant variations with the solar cycle, geomagnetic conditions, seasons, latitudes and even local time. Representation of this research focused on global distribution of electron (Te) and ion temperatures (Ti) during great and severe geomagnetic storms (GMS), their daily and seasonally variation for years (2001-2013), variations of electron and ion temperature during GMS with plasma velocity and geographic latitudes. Finally comparison between observed and predicted Te and Ti get from IRI model during the two kinds of storm selected. Data from satellite Defense Meteorological Satellite Program (DMSP) 850 km altitude are taken for Te, Ti and plasma velocity for different latitudes during great
... Show More