Preferred Language
Articles
/
bsj-972
Weak Essential Submodules
...Show More Authors

A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Strong and Weak Forms of μ-Kc-Spaces
...Show More Authors

In this paper, we provide some types of - -spaces, namely, - ( )- (respectively, - ( )- , - ( )- and - ( )-) spaces for minimal structure spaces which are denoted by ( -spaces). Some properties and examples are given.
The relationships between a number of types of - -spaces and the other existing types of weaker and stronger forms of -spaces are investigated. Finally, new types of open (respectively, closed) functions of -spaces are introduced and some of their properties are studied.

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Injectivity and chain conditions on y-closed submodules
...Show More Authors

Let R be a commutative ring with identity and let M be a unital left Rmodule.
Goodearl introduced the following concept :A submodule A of an R –
module M is an y – closed submodule of M if is nonsingular.In this paper we
introduced an y – closed injective modules andchain condition on y – closed
submodules.

View Publication Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Baghdad Science Journal
Notes on Approximately Pure Submodules
...Show More Authors

Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be approximately pure submodule of an R-module, if for each ideal I of R. The main purpose of this paper is to study the properties of the following concepts: approximately pure essentialsubmodules, approximately pure closedsubmodules and relative approximately pure complement submodules. We prove that: when an R-module M is an approximately purely extending modules and N be Ap-puresubmodulein M, if M has the Ap-pure intersection property then N is Ap purely extending.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Early Childhood Special Education (int-jecse)
(𝝁∗- Essential Lifting Modules)
...Show More Authors

Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
An Approach to Generalized Extending Modules Via Ec-Closed Submodules
...Show More Authors

In this article, we introduce a class of modules that is analogous of generalized extending modules. First  we define a module M to be a generalized ECS if and only if for each ec-closed submodule A of M, there exists a direct summand D of M such that  is singular, and then we locate generalized ECS between the other extending generalizations. After that we present some of characterizations of generalized ECS condition. Finally, we show that the direct sum of a generalized ECS need not be generalized ECS and deal with decompositions for be generalized ECS concept.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
On Semiannahilator Supplement Submodules
...Show More Authors

Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.

Scopus (1)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Small Semiprime Submodules
...Show More Authors
Abstract<p>Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.</p>
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
J-Small Semiprime Submodules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a commutative ring with identity and <italic>Y</italic> be an unitary <italic>R</italic>-module. We say a non-zero submodule <italic>s</italic> of <italic>Y</italic> is a <italic>J –</italic> small semiprime if and only if for whenever <italic>i</italic> ∈ <italic>R, y ∈ Y,(Y)</italic> is small in <italic>Y</italic> and <italic>i<sup>2</sup>y</italic> ∈ <italic>S</italic> + <italic>Rad (Y)</italic> implies <italic>iy</italic> ∈ <italic>S.</italic> In this paper, we investigate some properties and chara</p> ... Show More
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Weakly Small Smiprime Submodules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a commutative ring with an identity, and <italic>G</italic> be a unitary left <italic>R</italic>-module. A proper submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is called semiprime if whenever <italic>a ∈ R, y ∈ G, n ∈ Z</italic> <sup>+</sup> and <italic>a<sup>n</sup>y ∈ H</italic>, then <italic>ay ∈ H</italic>. We say that a properi submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is a weakly small semiprime, if whenever <ita></ita></p> ... Show More
Scopus Crossref
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On e-Small Submodules
...Show More Authors

Let M be an R-module, where R is a commutative ring with unity. A submodule N of M is called e-small (denoted by N e  M) if N + K = M, where K e  M implies K = M. We give many properties related with this type of submodules.

View Publication Preview PDF