Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
In this research The study of Multi-level model (partial pooling model) we consider The partial pooling model which is one Multi-level models and one of the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly among the stations in Iraq. We use Akaik′s Informa
... Show MoreThe aim of this research is to study the factors affecting drag coefficient (C d ) in
non-Newtonian fluids which are the rheological properties ,concentrations of non-
Newtonian fluids, particle shape, size and the density difference between particle and
fluid .Also this study shows drag coefficient (C d ) and particle Reynolds' number (Re
P ) relationship and the effect of rheological properties on this relationship.
An experimental apparatus was designed and built, which consists of Perspex pipe
of length of 160 cm. and inside diameter of 7.8 cm. to calculate the settling velocity,
also electronic circuit was designed to calculate the falling time of particles through
fluid.
Two types of solid particles were
An experimental work has been done to study the major factors that affect the axial dispersion of some hydrocarbons during liquid-liquid miscible displacement. Kerosene and gas oil are used as displacing phase while seven liquid hydrocarbons of high purity represent the displaced phase, three of the liquids are aromatics and the rest are of paraffinic base. In conducting the experiments, two packed beds of different porosity and permeability are used as porous media.
The results showed that the displacement process is not a piston flow, breakthrough of displacing fluids are shown before one pore volume has been injected. The processes are stable with no evidence of viscous fingering.
Dispersion model as a
... Show MoreDespite recent attempts to improve safety in the construction sector, this sector is considered dangerous and unsafe. Iraq is one of the emerging nations that suffers from a lack of construction safety management. In 2018, the construction sector in Iraq was responsible for 38% of all industrial accidents. Creating a safety program minimizes this problem by making safety an intrinsic part of construction projects. As a result, this article aims to identify the crucial safety factors that affect the safety performance in Iraqi construction projects. After conducting a critical literature review of the related literature, a list of 35 sub-factors classified into nine categories of main factors was chosen to rank each facto
... Show MoreRisk factors can be considered unique in construction projects, especially in tendering phase. This research is directed to recognize and evaluate the importance of critical risk factors in the tendering phase related to Iraq’s construction project. As a rule, construction projects are impacted by risk factors throughout the project life cycle; without identifying and allocating these risk factors, the project cannot succeed. In this paper, the open and closed questionnaires are used to categorize the critical risk factors in tendering phase. Research aims to recognize the factors that influence the success of tendering phase, to determine the correct response to the risk’s factors in this research article, (IBM, SPSS, V23) package has
... Show MoreRisk factors can be considered unique in construction projects, especially in tendering phase. This research is directed to recognize and evaluate the importance of critical risk factors in the tendering phase related to Iraq’s construction project. As a rule, construction projects are impacted by risk factors throughout the project life cycle; without identifying and allocating these risk factors, the project cannot succeed. In this paper, the open and closed questionnaires are used to categorize the critical risk factors in tendering phase. Research aims to recognize the factors that influence the success of tendering phase, to determine the correct response to the risk’s factors in this research article, (IBM, SPSS, V23) package has
... Show MorePassword authentication is popular approach to the system security and it is also very important system security procedure to gain access to resources of the user. This paper description password authentication method by using Modify Bidirectional Associative Memory (MBAM) algorithm for both graphical and textual password for more efficient in speed and accuracy. Among 100 test the accuracy result is 100% for graphical and textual password to authenticate a user.
In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.