Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods
In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreBackground: Osteoporosis is an extra-articular complication of rheumatoid arthritis that results in increased risk of fractures and associated morbidity, mortality, and healthcare costs. Objective: To evaluate changes in bone mineral density in a sample of rheumatoid arthritis (RA) patients on biological (anti tumor necrosis factor (TNF) alpha) and non-biological agent disease modifying antirheumatic drugs (DMARDs). Patients and Methods: A cross sectional study enrolled 60 RA patients diagnosed by rheumatologist according to the 2010 American College of Rheumatology/European League Against Rheumatism (2010 ACR/EULAR) classification criteria for RA. Thirty patient on biological agent (anti TNF alpha) and 30 patient on non-biological agent (D
... Show MoreOne of the most important problems of IRAQI HEALTH MINISTRY and all healthy instruments in IRAQ is Chronic Diseases because it have a negative effects on IRAQI population, this is the aim of our study ,to specify the important Chronic diseases which make the population fell weakly, they are six diseases as the IRAQ ministry of health specified ( Diabetes, blood pressure diseases ,Brain diseases , Cardiology, Asthma, epilepsy) we got these data from IRAQI HEALTH MINISTRY ,bureau of planning and studies ,for the period 2009-2012,as monthly observations , represent sum of peoples have chronic diseases in Baghdad .
Our research obj
... Show MoreThis paper is a review of the genus Sitta in Iraq, Five species of this genus are recognized
Sitta kurdistanica, S. neumayr, S. europaea, S.dresseri and S. tephronota. Geographical
distribution and systematic nots were given for separation and identification, also some notes
on nest building and nest sites of S. tephronota supporting by figures are presented.
Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreBackground: Appendectomy is still one of the most commonly performed emergency surgical procedures worldwide.Avoiding delays in the diagnosis in these patients may play a role in reducing observed morbidity.Aim of study:To analyze the clinico-pathological profile and outcomes of patients undergoing emergency appendectomies to determine risk factors influencingcomplicaions.Type of the study: A prospective analytic studyPatients and Methods: The study involves 108 patients underwent emergency appendectomies at Al-kindy teaching hospital from April 2014 to March 2015. Appendicitis was categorized into two groups perforated andnonperforatedappendicities. A comparison between them was made in regard to Gender, Age, clinical presentation, inve
... Show MoreEarthquakes in the Holy Qur’an and the Hadith of the Noble Prophet, an intellectual approach
The survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as
... Show More