Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutant
... Show MoreMany waste materials can be repurposed effectively within asphalt concrete to enhance the performance and sustainability of pavement. One of these waste materials is sawdust ash (SDA). This study explores the beneficial use of SDA as a substitute for limestone dust (LD) mineral filler in asphalt concrete. The replacement rate was 0%, 15%, 30%, 45%, and 60% by weight of total mineral filler. Scanning electron microscopy (SEM) was employed to assess the surface morphology of Sawdust (SD), SDA, and LD. In addition, a series of tests, including Marshall stability and flow, indirect tensile strength,moisture susceptibility, and repeated uniaxial loading tests, were conducted to examine the performance characteristics of asphalt mixtures of diffe
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
Objectives: the study aims to findout the effectiveness of educational program concerning infection control guideline on nurses, and to find out the relationship between effectiveness of program and types of hospital unit, age, level of education, and years of experience of nurses. Methodology: A quasi-experimental design study was carried out in Baghdad teaching hospital in the wards, for the period of December, 20th 2013 to September, 30th of July 2014, The study samples is composed of (60) nurses who have been actually working in the medical ward, blood disease, psychiatric ward, and neurological war
Objective: This study goal was to screen participants from different settings in Baghdad for depression using Beck Depression Inventory (BDI) scale and identify factors influencing the levels of depression. Methods: This cross-sectional study included a convenience sample of 313 people from four settings (teaching hospital, college of medicine, college of pharmacy, and high school) in Baghdad, Iraq. The participants were screened using paper survey relying on the BDI scale during spring 2018. Using multiple linear regression analysis, we measured the association between depression scores and six participant factors. Results: The overall prevalence of depression in our sample was 57.2%. Female participants had higher BDI
... Show MoreThis essay aims to highlight the most important issues and difficulties facing implementing large projects that follow the turn-key method, considered one of the types of contractual methods in Iraq, especially for large and complex projects requiring speedy completion. The projects implemented in this way face delays and delays in completion, which led to the lack of benefit from the projects for which they were implemented, especially those affecting the lives of citizens within the health sector. The case study dealt with the construction of hospitals with multi-bed capacities within multiple governorates in Iraq, With large financial allocations within the federal budget of the Government of Iraq over several years.
... Show MoreBackground: Post-partum depression (PPD) is a form of postnatal depression that affects mothers. Clinical manifestations usually appear within six months after delivery. Risk factors that influence the severity of post-partum depression are not fully known in the Iraqi population.
Objectives: We aim to evaluate the risk factors and identify potential predictors that may influence the symptom levels (severity) of post-partum depression among Iraqi women from Baghdad.
Subjects and Methods: The current study is cross-sectional, and we used the Edinburgh Postnatal Depression Scale (EPDS) and a cut-off value of 13 to differentiate patients into two those with lower symptom levels (LSL) and higher symptom levels (HSL). We also explored p
