Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
In this paper, an approach for object tracking that is inspired from human oculomotor system is proposed and verified experimentally. The developed approach divided into two phases, fast tracking or saccadic phase and smooth pursuit phase. In the first phase, the field of the view is segmented into four regions that are analogue to retinal periphery in the oculomotor system. When the object of interest is entering these regions, the developed vision system responds by changing the values of the pan and tilt angles to allow the object lies in the fovea area and then the second phase will activate. A fuzzy logic method is implemented in the saccadic phase as an intelligent decision maker to select the values of the pan and tilt angle based
... Show MoreEncouraging micro-enterprises for comprehensive economic development are crucial to achieve the ambitious vision 2030 of the Kingdom of Saudi Arabia.
Small and Medium enterprises are inputting around 15.5 per cent to GDP while 33 per cent contribution as a private sector to Saudi Arabia's gross domestic product (GDP). This study aims to identify the most important factors that affect the efficiency of small enterprises in Saudi Arabia. To accomplish this objective, the study was conducted for small projects via the comprehensive inventory method under the supervision of the Institute of Entrepreneurship. A total of 282 questionnaires were collected from entrepreneurs and the differentiation analysis
... Show More
The research aims to identify the factors that affect the quality of the product by using the Failure Mode and Effect Analysis (FMEA) tool and to suggest measures to reduce the deviations or defects in the production process. I used the case study approach to reach its goals, and the air filter product line was chosen in the air filters factory of Al-Zawraa General Company. The research sample was due to the emergence of many defects of different impact and the continuing demand for the product. I collected data and information from the factory records for two years (2018-2019) and used a scheme Pareto Fishbone Diagram as well as an FMEA tool to analyze data and generate results.
Par
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreThis study aimed to measure the accounting conservatism and the lemited factors which affected on it in the annual financial reports of insurance companies which listed on the Amman Stock Exchange during the period from 2005 to 2016, these factors were represented by firm age, firm debt and firm size.
Using the market value model (MV) To book value ( BV) Beaver and Ryan (2000) The level of the accounting conservatism was measured. The study found that the insurance companies which are listed on the ASE exercise the accounting conservatism when they were preparing financial reports. And when conducting a process of the test of the affected of the factors (The age of the
... Show MoreAdherence to cardiac medications makes a significant contribution to avoidance of morbidity and premature mortality in patients with cardiovascular disease. This quantitative study used cross‐sectional survey design to evaluate medication adherence and contributing factors among patients with cardiovascular disease, comparing patients who were admitted to a cardiac ward (
The aim of the research is to examine the multiple intelligence test item selection based on Howard Gardner's MI model using the Generalized Partial Estimation Form, generalized intelligence. The researcher adopted the scale of multiple intelligences by Kardner, it consists of (102) items with eight sub-scales. The sample consisted of (550) students from Baghdad universities, Technology University, al-Mustansiriyah university, and Iraqi University for the academic year (2019/2020). It was verified assumptions theory response to a single (one-dimensional, local autonomy, the curve of individual characteristics, speed factor and application), and analysis of the data according to specimen partial appreciation of the generalized, and limits
... Show More