Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
The haplotype association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease.Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls.It starts with inferring haplotypes from genotypes followed by a haplotype co-classification and marginal screening for disease-associated haplotypes.Unfortunately,phasing uncertainty may have a strong effects on the haplotype co-classification and therefore on the accuracy of predicting risk haplotypes.Here,to address the issue,we propose an alternative approach:In Stage 1,we select potential risk genotypes inste
... Show MoreBackground: Poly cystic ovary syndrome is a common disorder in women of reproductive age, it is associated with disturbance of reproductive, endocrine and metabolic functions. The pathophysiology of PCOS appears to be multifactorial and polygenic. Leptin seems to play an important role in pathophysiology of PCOS especially in women with BMI ≥25kg/m2. Objectives: To assess leptin level in both PCOS and healthy women and explore the relation to their body weight and body mass index. Patient and Methods: A total of 120 women were enrolled in this study, 60 women (50%) had PCOS (study group) and the reminder 60 women (50%) were healthy women and considered as control group. BMI was calculated first. Both groups were further sub
... Show MoreRheumatoid arthritis is a chronic systemic inflammatory disease. Inflammation leads to joint damage and increases the risk of cardiovascular diseases. Neutrophil lymphocyte ratio (NLR) is a measure of inflammation in many diseases. Therefore, we aimed to evaluate the usefulness of NLR to detect inflammation in RA, and its correlation to RA disease activity indices and some hematological parameters. A cross-sectional study involving 24 patients with active rheumatoid arthritis (RA) who are using MTX participated in this study. All patients were clinically evaluated using disease activity score of 28 joints (DAS28) and simplified disease activity index (SDAI), whereas functional disability was assessed by health assessment questionnaire di
... Show MoreIn this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show MoreCoronavirus disease 2019 (COVID-19) is a systemic disease with a substantial impact on the hematopoietic system and hemostasis. Neutrophilia is an early indicator of SARS-CoV-2 infection, while lymphopenia acts as a biomarker of the severity of infection, and the neutrophil-to-lymphocyte ratio (NLR) is the main indicator of cytokine storms. Thus, this study aimed to provide local data about hematological parameters among COVID-19 patients and estimate their correlation with viral load and other factors in severe cases. A total of 99 nasopharyngeal swabs and whole blood specimens were collected from individuals suspected with COVID-19 between October and December 2020. Samples were tested by real time reverse transcript
... Show MoreBackground: Chronic kidney disease is a condition that results from an indefinite change in the structure and function of the kidneys. A slow, steady progression characterizes it and is irreversible. Objectives: This study aims to evaluate the findings of certain biochemical and hematological tests in samples from Iraqi CKD patients. Methods: This study included 90 subjects, where 70 patients with chronic kidney disease and 20 healthy individuals. Blood samples were collected from the patients during their visits to Ghazi Al-Hariri Surgical Specialties' Hospital- Medical City, Baghdad, Iraq. Age, sex and body mass index were assessed for each participant followed by renal function tests [serum blood urea, creatinine, uric acid a
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreAbstract: non-alcoholic fatty liver disease (NAFLD) is one of the widespread chronic liver diseases; it is ranging from simple fat buildup in the liver (steatosis) to non-alcoholic steatohepatitis (NASH) presence of inflammation and hepatocyte injury. &nb
... Show MoreThe objective of this study is to evaluate the level of cytokines IL-1?, IL-10 and IL-17A in the serum of patients with Alzheimer's disease (AD), vascular dementia (VD) and down syndrome (DS). The results showed that Serum level of IL-1? was significantly increased in AD patients (3.79 ± 0.26 pg/ml) as compared with DS patients (2.78 ± 0.39 pg/ml) or controls (2.78 ± 0.22 pg/ml), while no significant difference was observed between AD and VD (3.25 ± 0.20 pg/ml) patients or between VD patients, DS patients and controls. The serum level of IL-10 was approximated in VD and DS patients and controls (3.39 ± 0.24, 2.77 ± 0.39 and 3.41 ± 0.35 pg/ml, respectively), but was significantly (P ? 0.05) increased in AD patients (5.73 ± 0.55 pg/ml
... Show More