The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting regional monitoring into point monitoring utilizing the discretization method in WSN. In the experiments, the ICS-PSO-OBL with the standard CS and three CS variants (MACS, ICS-2, and ICS) are utilized to execute the simulation experiment under different numbers of nodes (20 and 30, respectively). The experimental results reveal that the optimized coverage of ICS-PSO-OBL is 18.36%, 7.894%, 15%, and 9.02% higher than that of standard CS, MACS, ICS-2, and ICS when the number of nodes is 20. Moreover, it is 16.94%, 9.61%, 12.27%, and 7.75% higher when the quantity of nodes is 30, the convergence speed of ICS-PSO-OBL, and the distribution of nodes is superior to others.
In many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MoreKrawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreIn this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
Abstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability. Furthermore, the sensor is shif
... Show MoreIn this work, a simple and new method is proposed to simultaneously improve the physical layer security and the transmission performance of the optical orthogonal frequency division multiplexing system, by combining orthogonal frequency division multiplexing technique with chaotic theory principles. In the system, a 2-D chaotic map is employed. The introduced system replaces complex operations such as matrix multiplication with simple operations such as multiplexing and inverting. The system performance in terms of bit error rate (BER) and peak to average ratio (PAPR) is enhanced. The system is simulated using Optisystem15 with a MATLAB2016 and for different constellations. The simulation results showed that the BE
... Show MoreThe aim of this research is to adopt a close range photogrammetric approach to evaluate the pavement surface condition, and compare the results with visual measurements. This research is carried out on the road of Baghdad University campus in AL-Jaderiyiah for evaluating the scaling, surface texture for Portland cement concrete and rutting, surface texture for asphalt concrete pavement. Eighty five stereo images of pavement distresses were captured perpendicular to the surface using a DSLR camera. Photogrammetric process was carried out by using ERDAS IMAGINE V.8.4. The results were modeled by using a relationship between the photogrammetric and visual techniques and selected the highest coefficient of determination (R2). The first techniqu
... Show MoreThe aim of this research is to adopt a close range photogrammetric approach to evaluate the pavement surface condition, and compare the results with visual measurements. This research is carried out on the road of Baghdad University campus in AL-Jaderiyiah for evaluating the scaling, surface texture for Portland cement concrete and rutting, surface texture for asphalt concrete pavement. Eighty five stereo images of pavement distresses were captured perpendicular to the surface using a DSLR camera. Photogrammetric process was carried out by using ERDAS IMAGINE V.8.4. The results were modeled by using a relationship between the photogrammetric and visual techniques and selected the highest coefficient of determinatio
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show MoreIn this work, a fiber-optic biomedical sensor was manufactured to detect hemoglobin percentages in the blood. SPR-based coreless optical fibers were developed and implemented using single and multiple optical fibers. It was also used to calculate refractive indices and concentrations of hemoglobin in blood samples. An optical fiber, with a thickness of 40 nanometers, was deposited on gold metal for the sensing area to increase the sensitivity of the sensor. The optical fiber used in this work has a diameter of 125μm, no core, and is made up of a pure silica glass rod and an acrylate coating. The length of the fiber was 4cm removed buffer and the splicing process was done. It is found in practice that when the sensitive refractive i
... Show More