The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting regional monitoring into point monitoring utilizing the discretization method in WSN. In the experiments, the ICS-PSO-OBL with the standard CS and three CS variants (MACS, ICS-2, and ICS) are utilized to execute the simulation experiment under different numbers of nodes (20 and 30, respectively). The experimental results reveal that the optimized coverage of ICS-PSO-OBL is 18.36%, 7.894%, 15%, and 9.02% higher than that of standard CS, MACS, ICS-2, and ICS when the number of nodes is 20. Moreover, it is 16.94%, 9.61%, 12.27%, and 7.75% higher when the quantity of nodes is 30, the convergence speed of ICS-PSO-OBL, and the distribution of nodes is superior to others.
It is frequently asserted that an advantage of a binary search tree implementation of a set over linked list implementation is that for reasonably well balanced binary search trees the average search time (to discover whether or not a particular element is present in the set) is O(log N) to the base 2 where N is the number of element in the set (the size of the tree). This paper presents an experiment for measuring and comparing the obtained binary search tree time with the expected time (theoretical), this experiment proved the correctness of the hypothesis, the experiment is carried out using a program in turbo Pascal with recursion technique implementation and a statistical method to prove th
... Show MoreVariable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreThe Diffie-Hellman is a key exchange protocol to provide a way to transfer shared secret keys between two parties, although those parties might never have communicated together. This paper suggested a new way to transfer keys through public or non-secure channels depending on the sent video files over the channel and then extract keys. The proposed method of key generation depends on the video file content by using the entropy value of the video frames. The proposed system solves the weaknesses in the Diffie-Hellman key exchange algorithm, which is MIMA (Man-in-the-Middle attack) and DLA( Discrete logarithm attack). When the method used high definition videos with a vast amount of data, the keys generated with a large number up to 5
... Show MoreArtificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi
... Show MoreThe aim of this paper is to design a PID controller based on an on-line tuning bat optimization algorithm for the step-down DC/DC buck converter system which is used in the battery operation of the mobile applications. In this paper, the bat optimization algorithm has been utilized to obtain the optimal parameters of the PID controller as a simple and fast on-line tuning technique to get the best control action for the system. The simulation results using (Matlab Package) show the robustness and the effectiveness of the proposed control system in terms of obtaining a suitable voltage control action as a smooth and unsaturated state of the buck converter input voltage of ( ) volt that will stabilize the buck converter sys
... Show MoreIn this paper, an algorithm for binary codebook design has been used in vector quantization technique, which is used to improve the acceptability of the absolute moment block truncation coding (AMBTC) method. Vector quantization (VQ) method is used to compress the bitmap (the output proposed from the first method (AMBTC)). In this paper, the binary codebook can be engender for many images depending on randomly chosen to the code vectors from a set of binary images vectors, and this codebook is then used to compress all bitmaps of these images. The chosen of the bitmap of image in order to compress it by using this codebook based on the criterion of the average bitmap replacement error (ABPRE). This paper is suitable to reduce bit rates
... Show MoreIn networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f
... Show More