The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting regional monitoring into point monitoring utilizing the discretization method in WSN. In the experiments, the ICS-PSO-OBL with the standard CS and three CS variants (MACS, ICS-2, and ICS) are utilized to execute the simulation experiment under different numbers of nodes (20 and 30, respectively). The experimental results reveal that the optimized coverage of ICS-PSO-OBL is 18.36%, 7.894%, 15%, and 9.02% higher than that of standard CS, MACS, ICS-2, and ICS when the number of nodes is 20. Moreover, it is 16.94%, 9.61%, 12.27%, and 7.75% higher when the quantity of nodes is 30, the convergence speed of ICS-PSO-OBL, and the distribution of nodes is superior to others.
A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show MoreNurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreData Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available and the increasingly complex requirements of system software whose functions can adapt to changing needs to gain the trust of its users, an approach is needed in a continuous software engineering process. This need drives the emergence of new challenges in the discipline of requirements engineering to meet the required changes. The problem in this study was the method in data discrepancies which resulted in the needs elicitation process being hampered and in the end software development found discrepancies and could not meet the need
... Show MoreAbstract
Zigbee is considered to be one of the wireless sensor networks (WSNs) designed for short-range communications applications. It follows IEEE 802.15.4 specifications that aim to design networks with lowest cost and power consuming in addition to the minimum possible data rate. In this paper, a transmitter Zigbee system is designed based on PHY layer specifications of this standard. The modulation technique applied in this design is the offset quadrature phase shift keying (OQPSK) with half sine pulse-shaping for achieving a minimum possible amount of phase transitions. In addition, the applied spreading technique is direct sequence spread spectrum (DSSS) technique, which has
... Show MoreAbstract
The current research aims to know the reality of the research's coefficients, to know correlation and effectiveness between the organizational Agility and high performance . The current research has been applied on the official banks , including a sample of senior administration members (120) ; besides , the research has used questionnaire that being considered as the main tool for gathering information and data . It includes 59 questions in addition to the personal interviews program as to support the questionnaire and to fulfill a great deal of reality. It has been anal
... Show MoreBasic orientation is to look at identifying conceptual perspective to market self-research and descriptive, as has the marketing theme for the same attention in the practical side before endo scopic In recent years, is marketing an integrated and holistic included many areas not limited to the marketing of goods and services, and even included the marketing of religion, politics and individuals for themselves, as the awareness and concepts that seep into the soul of man from its inception until his arrival to the stage of owning a level of skills or expertise, scientific or all of those things degrees mixed with ambition and aspiration for self-realization takes way to search for opportunities or created, often observe individual
... Show MoreImproved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
Finding the shortest route in wireless mesh networks is an important aspect. Many techniques are used to solve this problem like dynamic programming, evolutionary algorithms, weighted-sum techniques, and others. In this paper, we use dynamic programming techniques to find the shortest path in wireless mesh networks due to their generality, reduction of complexity and facilitation of numerical computation, simplicity in incorporating constraints, and their onformity to the stochastic nature of some problems. The routing problem is a multi-objective optimization problem with some constraints such as path capacity and end-to-end delay. Single-constraint routing problems and solutions using Dijkstra, Bellman-Ford, and Floyd-Warshall algorith
... Show More