Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Oriented Gradients) is utilized to extract from the images. In addition, the Binarized Genetic Algorithm (BGA) is utilized as a features selection in order to select the most effective features of HOG. Random Forest (RF) functions as a classifier to categories facial emotions in people according to the image samples. The facial human examples of photos that have been extracted from the Yale Face dataset, where it contains the eleven human facial expressions are as follows; normal, left light, no glasses, joyful, centre light, sad, sleepy, wink and surprised. The proposed system performance is evaluated relates to accuracy, sensitivity (i.e., recall), precision, F-measure (i.e., F1-score), and G-mean. The highest accuracy for the proposed BGA-RF method is up to 96.03%. Besides, the proposed BGA-RF has performed more accurately than its counterparts. In light of the experimental findings, the suggested BGA-RF technique has proved its effectiveness in the human facial emotions identification utilizing images.
Background: Hypothyroidism is the most abundant thyroid disorder worldwide. For decades, levothyroxine was the main effective pharmacological treatment for hypothyroidism. A variety of factors can influence levothyroxine dose, such as genetic variations. Studying the impact of genetic polymorphisms on the administration of medications was risen remarkably. Different genetic variations were investigated that might affect levothyroxine dose requirements, especially the deiodinase enzymes. Deiodinase type 2 genetic polymorphisms’ impact on levothyroxine dose was studied in different populations.
Objective: To examine the association of the two single nucleotide polymorphism (SNP)s of deiodinase t
... Show MoreThe aim of this study is to know the effect of different percentages of chitosan added to drinking water on the weight and quality of quail meat, physical anatomy in terms of (the body of the long carcass, the girth of the chest, the length of the thigh bones, the thigh racket, the fullness of the chest), chemical analysis (protein, moisture, fat and ash) and sensory evaluation of quail meat. It was purchased 320 Iraqi-origin birds of quail and one day old. Chicks were randomly distributed to three equal groups' treatments and treated with chitosan and added to the drinking water: the first treatment (0.1 gm./L water only as a control treatment), the second treatment (0.2 gm./L of chitosan was added to the drinking water) and the
... Show MoreSome problems want to be solved in image compression to make the process workable and more efficient. Much work had been done in the field of lossy image compression based on wavelet and Discrete Cosine Transform (DCT). In this paper, an efficient image compression scheme is proposed, based on a common encoding transform scheme; It consists of the following steps: 1) bi-orthogonal (tab 9/7) wavelet transform to split the image data into sub-bands, 2) DCT to de-correlate the data, 3) the combined transform stage's output is subjected to scalar quantization before being mapped to positive, 4) and LZW encoding to produce the compressed data. The peak signal-to-noise (PSNR), compression ratio (CR), and compression gain (CG) measures were used t
... Show MoreIn present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
Spatial and frequency domain techniques have been adopted in this search. mean
value filter, median filter, gaussian filter. And adaptive technique consists of
duplicated two filters (median and gaussian) to enhance the noisy image. Different
block size of the filter as well as the sholding value have been tried to perform the
enhancement process.
This research aims to reveal the quality standards available in press images published in the news sites, the Iraqi News Agency and Al-Mada Press for the period from: 1/9/2019, to: 30/9/2019. The research is a descriptive research, in which the researcher relied on the survey methodology to achieve its objectives. The research reached a number of results, most notably the weak role of photojournalists in the websites and the adoption of those the Internet as a source for obtaining press images published with news and reports through its pages, as well as the neglect of the standard Description/Comment below the press images, which plays an important function in explaining and interpreting them for users.
The segmentation of aerial images using different clustering techniques offers valuable insights into interpreting and analyzing such images. By partitioning the images into meaningful regions, clustering techniques help identify and differentiate various objects and areas of interest, facilitating various applications, including urban planning, environmental monitoring, and disaster management. This paper aims to segment color aerial images to provide a means of organizing and understanding the visual information contained within the image for various applications and research purposes. It is also important to look into and compare the basic workings of three popular clustering algorithms: K-Medoids, Fuzzy C-Mean (FCM), and Gaussia
... Show MoreThe research specified with study the relation between the market share for the sample research banks and the amount of the achieved revenues from the investment, where the dominated belief that there potentiality enhancing the revenue on investment with the increase of the banks shares in their markets after their success in achieving rates of successive growth in their sales of sales and to a suitable achieve market coverage for their products and they have dissemination and suitable promotion activity, the market share represented the competition for the banks, and the markets pay attention to the market share as a strategic objective and to maintain them also increasi
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show More