The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accurate solution for indoor robot navigation. The more accurate solution of the guide robotic system opens a new window of the self-localization system and solves the more complex problem of indoor robot navigation. It makes a reliable interface between humans and robots. This study successfully demonstrated how a robot finds its initial position inside a room. A deep learning system, such as a convolutional neural network, trains the self-localization system as an image classification problem. The robot was placed inside the room to collect images using a panoramic camera. Two datasets were created from the room images based on the height above and below the chest. The above-mentioned method achieved a localization accuracy of 98.98%.
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreThe current research aims to identify the level of parental treatment methods tolerance, hostility, strictness, and warmth, as well as the level of self-efficacy among middle school students. Moreover, it aims to identify the correlation relationship between the variables of parental treatment methods and self-efficacy among middle school students. The research sample included (150) middle school students. For achieving the objectives of the current research, the researchers adopted a scale of parental treatment methods prepared by (Zughair, 2006), and a scale of self-efficacy prepared by (Youssef, 2016), which were applied in their final form to the research sample. The research reached the following results: parents use a low-level hos
... Show MoreDesigning machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
Recently, a new secure steganography algorithm has been proposed, namely, the secure Block Permutation Image Steganography (BPIS) algorithm. The new algorithm consists of five main steps, these are: convert the secret message to a binary sequence, divide the binary sequence into blocks, permute each block using a key-based randomly generated permutation, concatenate the permuted blocks forming a permuted binary sequence, and then utilize a plane-based Least-Significant-Bit (LSB) approach to embed the permuted binary sequence into BMP image file format. The performance of algorithm was given a preliminary evaluation through estimating the PSNR (Peak Signal-to-Noise Ratio) of the stego image for limited number of experiments comprised hiding
... Show MoreMedical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show MoreTwelve pends were selected and distributed on three verticals transects paths on the Tigers river in Al Rasheed county.Passing through land covers, that classified and covers the whole region. Based on the 8 Landsat of the year 2015. It was oriental classified by using Erdas 10.2 . The pedons were distributed on the area of each varicty of these classes. the series of soil according of the transect series (DW74,MMg,DMu6 , Df96) respectively were represented P1 , P2 , P3 , P4 .
The second transits series(DM97,MM5,DM96,DF115) respectively were represented P5 , P6 , P7 , P8 .The third transits series(DM46,MMg,MF12,MM11) re
... Show MoreThe availability of statistical data plays an important role in planning process. The importance of this research which deals with safety of statistical data from errors and outliers values. The Objective of this study is to determine the outlier values in statistical data by using modern exploratory data methods and comparing them with parametric methods. The research has been divided into four chapters ,the main important conclusions reached are:1-The exploratory methods and the parametric methods showed variation between them in determining the outlier values in the data.
2-The study showed that the box plot method was the best method used in determining
... Show MoreThe main target of this paper is to determine the optimum time for preventive maintenance on machines. Tow methods has been implemented estimating the optimum time duration for preventive maintenance . the first techniques use scheduling depending on data concerning the machine maintenance cost and halted cost from the production reach to the optimum time for maintenance which reflect the minimum cost. Where as the second techniques depends on reability function to estimate the optimum duration time which reflect the minimum cost. The tow techniques above by which we count on in fixing the preventive maintenance both give same result . we also prove that the scheduling method best than the reability function .