In regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement different history-based TCP techniques. The second objective is to explore the problem of equal priority in history-based TCP techniques. The third objective is to explore random sorting as a solution to the problem of equal priority in history-based TCP techniques. Datasets of historical records of test cases from conventional and modern sources were collected. History-based TCP techniques were applied to different datasets. The History-based TCP techniques were checked for the problem of equal priority. Then random sorting was used as a solution to the problem of equal priority. Finally, the results were elaborated in terms of APFD and execution time. The results indicate that history-based techniques also suffer from the problem of equal priority like other types of TCP techniques. Secondly, random sorting does not produce optimal results while trying to solve the problem of equal priority in history-based TCP. Furthermore, random sorting deteriorates the results of history-based TCP techniques when employed to solve the problem of equal priority. One should resort to random sorting if no other solution exists. The decision to choose the best solution requires a cost-benefit analysis keeping in view the context and solution under consideration.
Background: Diabetes mellitus a major factor that has adverse effects on the vascular system and the heart. It causes an increase in cardiac muscle thickness, resulting in decreased compliance and increased peripheral arterial stiffness. This study aims to assess the left ventricular mass (LVM) and left ventricular hemodynamic changes in diabetic patients measured by Doppler echocardiography. Patients and Methods: The study included 50 diabetic patients ranging in age between 25 and 80 years, (mean age: 54.1 ± 15.10, 19 males, 31 females) and 50 healthy subjects, aged 25 to 80 years (mean age: 48.52 ± 14.45, 11 males, 39 females). Doppler echocardiography was used to assess left ventricular function. The measurements included
... Show MoreA new ligand [N-(4-methoxy benzoyl amino)-thioxo methyl ] leucine (MBL) was prepared from the reaction of (4-methoxy benzoyl isothiocyanate with leucine acid in molar ratio (l:l), it was characterized by elemental analysis (C.H.N.S), FT-IR, UV-Vis, 1H and 13C-NMR. The complexes of the bivalent ions (Mn, Fe, Co, Ni, Cu, Zn, Cd and Hg ) have been prepared and characterized too. The structural was established by elemental analysis (C.H.N.S), FT-IR, UV-Vis spectra, conductivity measurements atomic absorption and magnetic susceptibility and determination of molar ration (M:L). The complexes showed characteristic behavior of tetrahedral geometry around the metal ions except with (Cu) complex showed square planer.
This paper presents the implementation of a complex fractional order proportional integral derivative (CPID) and a real fractional order PID (RPID) controllers. The analysis and design of both controllers were carried out in a previous work done by the author, where the design specifications were classified into easy (case 1) and hard (case 2) design specifications. The main contribution of this paper is combining CRONE approximation and linear phase CRONE approximation to implement the CPID controller. The designed controllers-RPID and CPID-are implemented to control flowing water with low pressure circuit, which is a first order plus dead time system. Simulation results demonstrate that while the implemented RPID controller fails to stabi
... Show Moreداء المشوكات الكيسي (CE) هو مرض وبائي يسبب مرضًا خطيرًا وخسائر اقتصادية في معظم بلدان العالم. MiRNAs هي عامل جيني ضروري لتنظيم الاستجابة المناعية من خلال قدرته على التدخل في التعبير الخلوي ؛ واحد هذه الحوامض النووية الدقيقة -146 أ. هدفت الدراسة الحالية تقييم إذا كان بإمكاننا استخدام microRNA 146a كمؤشر حيوي للكشف عن CEو تحديد العلاقة بين التعبير الجيني microRNA 146a و IL-17 في مرضى CE.حيث اشتملت الدراسة على 50 مريضًا من CE تم إد
... Show MoreThe paper is concerned with the state and proof of the existence theorem of a unique solution (state vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved, the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the state equations is studied. The Frcéhet derivative derivation of the "Hamiltonian" is obtained. Finally the necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for optimality of the stat
... Show MoreReal Time Extended (RTX) technology works to take advantage of real-time data comes from the global network of tracking stations together with inventor locating and compression algorithms to calculate and relaying the orbit of satellite, satellite atomic clock, and any other systems corrections to the receivers, which lead to real-time correction with high accuracy. These corrections will be transferred to the receiver antenna by satellite (where coverage is available) and by IP (Internet Protocol) for the rest of world to provide the accurate location on the screen of smartphone or tablet by using specific software. The purpose of this study was to assess the accuracy of Global Navig
Abstract
Anaerobic digestion process of organic materials is biochemical decomposition process done by two types of digestion bacteria in the absence of oxygen resulting in the biogas production, which is produced as a waste product of digestion. The first type of bacteria is known as acidogenic which converts organic waste to fatty acids. The second type of bacteria is called methane creators or methanogenic which transforms the fatty acids to biogas (CH4 and CO2). The considerable amounts of biodegradable constitutes such as carbohydrates, lipids and proteins present in the microalgae biomass make it a suitable substrate for the anaerobic digestion or even c
... Show More