structural and electrical of CuIn (Sex Te1-x)2
In this work, As60Cu40-xSex thin films were synthesized, and the pulsed laser deposition method was used to study the effected partial replacement of copper with selenium. The electrical characteristics and optical characteristics, as indicated by the absorbance and transmittance as a function of wavelength were calculated. Additionally, the energy gap was computed. The electrical conductivity of the DC in the various conduction zones was calculated by measuring the current and voltage as a function of temperature. Additionally, the mathematical equations are used to compute the energy constants, electron hopping distance, tail width, pre-exponential factor, and density of the energy states in variation zones (densities of the energ
... Show MoreThe pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o . The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and r
... Show MoreThe pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o. The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and real and
... Show MoreA thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.
Copper selenide (Cu2Se) thin films were prepared by thermal evaporation at RT with thickness 500 nm. The heat-treating for (400 &500) K for the absorber layer has been investigated. This research includes, studying the structural properties of X-ray diffraction (XRD) that show the Cu2Se thin film (Cubic) and has a polycrystalline orientation prevalent (220). Moreover, studying the effect of annealing on their surface morphology properties by using Atomic Force Microscopy AFM. Optical properties were considered using the transmittance and absorbance spectra had been recorded when wavelength range (400 - 1000) nm in order to study the absorption coefficient and energy gap. It was found that these films had allowed direct transitio
... Show MoreCadmium Oxide thin films were deposited on glass substrate by spray pyrolysis technique at different temperatures (300,350,400, 500)oC. The optical properties of the films were studied in this work. The optical band-gap was determined from absorption spectra, it was found that the optical band-gap was within the range of (2.5-2.56)eV also width of localized states and another optical properties.
This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV
... Show MoreThis study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap val
... Show MoreThin films whose compositions can be expressed by (GeS2)100-xGax (x=0, 6,12,18) formula were obtained by thermal evaporation technique of bulk material at a base pressure of ~10-5 torr. Optical transmission spectra of the films were taken in the range of 300-1100 nm then the optical band gap, tail width of localized states, refractive index, extinction coefficient were calculated. The optical constants were found to increase at low concentration of Ga (0 to12%) while they decreases with further addition of Ga. The optical band gap was found to change in opposite manner to that of optical constants. The variation in the optical parameters are explained in terms of average bond energy
... Show More