The aim of this paper is to introduces and study the concept of CSO-compact space via the notation of simply-open sets as well as to investigate their relationship to some well known classes of topological spaces and give some of his properties.
The energy expectation values for Li and Li-like ions ( , and ) have been calculated and examined within the ground state and the excited state in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wave functions.
This study deals with free convection heat transfer for the outer surface of two
cylinders of the shape of (Triangular & Rectangular fined cylinders with 8-fins),
putted into two different spaces; small one with dimension of (Length=1.2m,
height=1m, width=0.9m) and large one with dimension of (Length=3.6m, height =3m,
width=2.7m). The experimental work was conducted with air as a heat transport
medium. These cylinders were fixed at different slope angles (0o, 30o, 60o and 90o)
.The heat fluxes were (279, 1012, 1958, 3005, 4419) W/m2, where heat transferred by
convection and radiation. In large space, the results show that the heat transfer from
the triangular finned cylinder is maximum at a slope angle equals
This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
The artistic concepts differ in their expressive and semantic relations, among these concepts are the artistic values, as there are points of view, social concepts and historical values interacted from one generation to another over the time. These values represent symbols and indications reflect reality, which has passed through the time to reach us with environmental forms saved by the history at the Natural History Museum, has an impact on the receives mind with its formal and sensory dimensions and connecting with that history as an environment that lacks to the current reality which has immortal means particularly in the cognitive thinking , and the reflection of that in the Iraqi culture and with the associated concepts of interior
... Show MoreThis paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.
Finally, all algori
... Show MoreThe research dealt with the study (interpretation of space in the art of installation), and it is located in four frameworks, the first is devoted to clarifying the research problem, its importance and the need for it, its goal, and its limits, and determining the most important terms contained therein.The research problem was determined from the question, does space embody those different and diverse materials that were formulated and installed by the artist into modern forms? Is the product of synthetic arts an appropriation of these spaces and domination of them?The problematic of interpreting space in its conceptual dimension in (synthetic) art in its multiplicity, diversity and difference, or objecting to the work of artistic system
... Show MoreThis paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application. First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.
The elements of theater formation that fall within the spatial experience of the scenography of the show, which the directors work in in the imaginary theater, are important and have an aesthetic, intellectual and cognitive dimension, working to highlight reality in an aesthetic image surrounding space and space. And its relationship to the distinct, multiple and variable spaces above the stage, to produce theatrical signals and endless meanings through the possibility of infinite reconfiguration of the theater's space and its public and private space through the distribution of a group of blocks within the scenic image.
I dealt with in the first chapter (the methodological framework), which includes the research problem identified
This research aims to clarify the principles governing the exploration and utilization of outer space, emphasizing the role of international law, particularly international criminal law, in addressing crimes committed beyond Earth whether aboard spacecraft, the International Space Station, or in outer space generally. It examines relevant international treaties governing outer space activities, evaluates their strengths and ambiguities, and highlights deficiencies in their provisions. Furthermore, the study analyzes traditional principles of state criminal jurisdiction territoriality, nationality, universality, and protection and assesses their applicability to offenses committed in outer space.