The aim of this paper is to introduces and study the concept of CSO-compact space via the notation of simply-open sets as well as to investigate their relationship to some well known classes of topological spaces and give some of his properties.
The main purpose of this paper is to introduce and prove some fixed point theorems for two maps that
satisfy -contractive conditions with rational expression in partially ordered metric spaces, our results improve and unify a multitude of fixed point theorems and generalize some recent results in ordered partially metric space.
Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreThe aim of this paper is to introduce the definition of projective 3-space over Galois field GF(q), q = pm, for some prime number p and some integer m.
Also the definitions of (k,n)-arcs, complete arcs, n-secants, the index of the point and the projectively equivalent arcs are given.
Moreover some theorems about these notations are proved.
Let
We study in this paper the composition operator of induced by the function ?(z)=sz+t where , and We characterize the normal composition operator C? on Hardy space H2 and other related classes of operators. In addition to that we study the essential normality of C? and give some other partial results which are new to the best of our knowledge.
The first aim in this paper is to introduce the definition of fuzzy absolute value on the vector space of all real numbers then basic properties of this space are investigated. The second aim is to prove some properties that finite dimensional fuzzy normed space have.
Let
, 1
( )
1 2 ,
( , ) 1 2
m n
s s
m n
f s s a e m n , (s it , j 1,2) j j j ,
m 1 and
n 1 being an increasing sequences of positive numbers and a E m n , where E
is Banach algebra, represent a vector valued entire Dirichlet functions in two
variables. The space of all such entire functions having order at most equal to
is considered in this paper. A metric topology using the growth parameters of f is
defined on and its various properties are obtained. The form of linear operator on
the space is characterized and proper bases are also characterized in terms of
growth parameters .
Let be an n-Banach space, M be a nonempty closed convex subset of , and S:M→M be a mapping that belongs to the class mapping. The purpose of this paper is to study the stability and data dependence results of a Mann iteration scheme on n-Banach space
It is the dynamic tension between the relatively fixed built environment and the constantly changing in social life that determines the nature of urban spaces belonging to different historical periods, and considered as a tool for diagnosing transformations in urban spaces, that’s why, the characteristics of urban space became unclear between positive spaces and negative spaces, so emerged the need to study contemporary urban space belonging to the current period of time and show the most important transformations that have occurred in contemporary urban space to reach urban spaces that meet the current life requirements. Therefore, the research dealt with a study of the characteristics of contemporary urban space and the most pr
... Show MoreIn this work, we introduce a new convergence formula. We also define cluster point , δ-Cauchy sequence, δ-convergent, δ-completeness , and define sequentially contraction in approach space. In addition, we prove the contraction condition is necessary and sufficient to get the function is sequentially contraction as well as we put a new structure for the norm in the approach space which is called approach –Banach space, we discuss the normed approach space with uniform condition is a Hausdorff space. Also, we prove a normed approach space is complete if and only if the metric generated from approach space is complete as well as prove every finite –dimensional approach normed space is δ-complete. We prove several r
... Show More