Nahrawan clay deposits lies in Diyala governorate , 65 Km, NE of Baghdad , according to the previous work in this field, in which they study the reserve belong to category of investigation ( C2 & C1 ) , we choice the proper area to investigation of category (B) with drill net( 200x 200m ) to rise the amount of reserve. The investigation work included drilling (116) boreholes of total depth ranges from (10.0-12.55m) , showed mainly clayey and silty deposits with little sand , and the typical borehole (648) represents all types of sediment in the area , and most of boreholes without sandy deposits , and all of these deposits is Quaternary sediment which is consist of two main sedimentary cycles ( the Pleistocene & Holocene ) . Chemical analysis for (343) samples were done , and physical test carried on ( 143 ) samples , and all show suitable properties for clay brick industry . the area of investigation covered ( 5.200.000 m2) involving ( 620.000 m2 ) containing soluble salt more than ( 3.5%) , which was separated from the total area , so the residual (4.580.000m2 ) had been taken to calculate the reserve , with depth of ( 10.76m) for the industrial clay bed . The reserve calculations depended on the following chemical & physical Properties: The chemical analysis shows that , CaO ( 16.53%) MgO ( 4.65% ) , SO3 ( 1.42%) , T.S.S. (2.42%) , the physical properties are unfired properties Which contains Bulk density ( 2.09gm/cm3) , moisture content (20.95%) , linear dry shri. (7.63%) , and fired properties which contain water absorption (18.8%) , linear shri. (0.8%) volume shri. (2.212% ) , compressive strength ( 468.606Kg/cm2) . So the reserve of category (B) is ( 49.280. 800 m3 ) or (102.966.000 Ton) the physical test showed that the brick classified into class (A-B) .
The objective of the research is to identify the effect of an instructional design according to the active learning modelsالباحثين in the achievement of the students of the fifth grade, the instructional design was constructed according to the active learning models for the design of education. The research experience was applied for a full academic year (the first & the second term of 2017-2018). The sample consisted of 58 students, 28 students for the experimental group and 30 students for the control group. The experimental design was adopted with partial and post-test, the final achievement test consisted of (50) objectives and essays items on two terms, the validity of the test was verified by the adoption of the Kudoric
... Show MoreAutorías: Omar Saeed Sabbar, Ali Mousa Jawad, Maher Amer Jabbar. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 3, 2023. Artículo de Revista en Dialnet.
Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the
Abstract The purpose of this paper is preparing exercises according to some biomechanical variables for women with low back pain and identifying the effect of exercise according to some biomechanical variables and relieving lower back pain for women. The researchers used the one-group experimental design. The sample was chosen by the intentional method to provide the necessary conditions for conducting the study, and they represent the research community and its sample. The researchers also excluded (2) of the injured women because they did not adhere to the rehabilitation sessions, and for the purpose of ensuring the homogeneity of the sample members, the researchers used the arithmetic mean, standard deviation, and the torsion coefficient
... Show MoreThis study uses an environmentally friendly and low-cost synthesis method to manufacture zinc oxide nanoparticles (ZnO NPs) by using zinc sulfate. Eucalyptus leaf extract is an effective chelating and capping agent for synthesizing ZnO NPs. The structure, morphology, thermal behavior, chemical composition, and optical properties of ZnO nanoparticles were studied utilizing FT-IR, FE-SEM, EDAX, AFM, and Zeta potential analysis. The FE-SEM pictures confirmed that the ZnO NPs with a size range of (22-37) nm were crystalline and spherical. Two methods were used to prepare ZnO NPs. The first method involved calcining the resulting ZnO NPs, while the second method did not. The prepared ZnO NPs were used as adsorbents for removing acid black 210
... Show MoreEach Intensity Modulated Radiation Therapy (IMRT) plan needs to be tested and verified before any treatment to check its quality. Octavius 4D-1500 phantom detector is a modern and qualified device for quality assurance procedure. This study aims to compare the common dosimetric criteria 3%/3 mm with 2%/2 mm for H&N plans for the IMRT technique. Twenty-five patients with head and neck (H&N) tumor were with 6MV x-ray photon beam using Monaco 5.1 treatment planning software and exported to Elekta synergy linear accelerator then tested for pretreatment verification study using Octavius 4D-1500 phantom detector. The difference between planned and measured dose were assessed by using local and global gamma index (GI) analysis method at
... Show MoreMetal-organic frameworks (MOFs) have emerged as revolutionary materials for developing advanced biosensors, especially for detecting reactive oxygen species (ROS) and hydrogen peroxide (H₂O₂) in biomedical applications. This comprehensive review explores the current state-of-the-art in MOF-based biosensors, covering fundamental principles, design strategies, performance features, and clinical uses. MOFs offer unique benefits, including exceptional porosity (up to 10,400 m²/g), tunable structures, biocompatibility, and natural enzyme-mimicking properties, making them ideal platforms for sensitive and selective detection of ROS and H₂O₂. Recent advances have shown significant improvements in detection capabilities, with limit
... Show More