The study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parameters for 10 sampling times. Obviously, with the increasing number of parameters, the value of the index will change. To minimize the effect of eclipse that arises in WQI and to solve the problem of overlapping quality and pollution, this study has created another index linked with IQWQI, which included both the quality and the degree of pollution. The second index is called the Environmental Risk Index (ERI), where only the variables that exceed the permissible environmental limits were included. Sensitivity Analysis was done to predicate IQWQI and to determine the most influential parameters in the IQWQI score; two types of models were chosen for the run of the sensitivity test, which are the Artificial Neural Network Regression (ANNR) and Backward Linear Regression (BLR). The results of IWOI and ERI for freshwater use during the dry season were very poor water quality with a high degree of risk. While in the wet season, both indices' values ranged from poor water quality to very poor water quality with a high degree of risk.
One of the most important problems in concrete production in Iraq and other country is the high sulfate content in sand that led to damage of concrete and hence reduces its compressive strength and may leads to cracking due to internal sulfate attack and delay ettringite formation. The magnetic water treatment process is adopted in this study. Many samples with different SO3 content are treated with magnetic water (12, 8, 4 and 2)L that needed for each 1kg of sand with the magnetic intensity (9000 and 5000) Gaus. The magnetic water needed is reduced with less SO3 content in sand. The ACI 211.1-91 concrete mix design was used in this research with slump range (75- 100) mm and the specified compressive strength (35MPa). The compressive streng
... Show MoreThis paper presents a new approach to discover the effect of depth water for underwater visible light communications (UVLC). The quality of the optical link was investigated with varying water depth under coastal water types. The performance of the UVLC with multiple input–multiple output (MIMO) techniques was examined in terms of bit error rate (BER) and data rate. The theoretical result explains that there is a good performance for UVLC system under coastal water.
In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show MoreDue to the significance of hospital drinking water, a study was done to assess the water in three hospitals in Baghdad (Al-Yarmouk Teaching Hospital, Ibn Sina Hospital, and Ibn-Al-Nafis Hospital) for its nature and quality, compare it to other hospitals in terms of its physical, chemical, and bacterial specifications, and compare it to international standards. According to Iraqi standards from 2009 and WHO standards from 2011, Chemical factors were measured, which included pH, Total Dissolved Solids (TDS), and Calcium Ion (Ca+2). Reported readings are all within acceptable ranges for drinking water. In contrast, turbidity, total hardness (T.H.), chlorides (Cl-), magnesium (Mg+2), the number of aerobic plates (APC), total coliform (T
... Show MoreA new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were
... Show MoreThis paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreAbstract
The aim of this paper is to investigate and discuss the mechanisms of corrosion of epoxy coatings used for potable water tanks. Two distinct types of Jotun epoxy coatings: Tankguard 412 contained polyamine cured epoxy and Penguard HB contained polyamide cured epoxy, were tested and studied using the electrochemical impedance spectroscopic (EIS) method. The porosity of epoxy coatings was determined using EIS method. The obtained results showed that the two epoxy coatings have excellent behavior when applied and tested in potable water of Basrah city. Polyamine is more resistance to water corrosion compared to polyamide curing epoxy and has high impedance values. Microscopic inspection after te
... Show MoreExperimental tests were conducted to investigate the thermal performance (cooling effect) of water mist system consisting of 5μm volume median diameter droplets in reducing the heat gain entering a room through the roof and the west wall by reducing the outside surface temperature due to the evaporative cooling effect during the hot dry summer of Baghdad/Iraq. The test period
was Fifty one days during the months May, June, and July 2012. The single test day consists of 16 test hours starting from 8:00 am to 12:00 pm. The results showed a reduction range of 1.71 to 15.5℃ of the roof outside surface temperature and 21.3 to 76.6% reduction in the daily heat flux entering the room through the roof compared with the case of not using w