The study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parameters for 10 sampling times. Obviously, with the increasing number of parameters, the value of the index will change. To minimize the effect of eclipse that arises in WQI and to solve the problem of overlapping quality and pollution, this study has created another index linked with IQWQI, which included both the quality and the degree of pollution. The second index is called the Environmental Risk Index (ERI), where only the variables that exceed the permissible environmental limits were included. Sensitivity Analysis was done to predicate IQWQI and to determine the most influential parameters in the IQWQI score; two types of models were chosen for the run of the sensitivity test, which are the Artificial Neural Network Regression (ANNR) and Backward Linear Regression (BLR). The results of IWOI and ERI for freshwater use during the dry season were very poor water quality with a high degree of risk. While in the wet season, both indices' values ranged from poor water quality to very poor water quality with a high degree of risk.
In this study, ceramic purifier (CP) was produced from a mixture of Iraqi raw materials. This ceramic mixture was prepared using Bentonite as a Clay, Porcelanite as a Silica, and Limestone as a flux. The produced ceramic filter was formed by semi-dry compressing method and was fired at 1200 C?. Physical properties of the produced CP were measured. A hydraulic test rig was constructed to study the hydraulic conductivity of the produced CP. The average hydraulic conductivity of the produced CP was 55 times that of commercial types of ceramic filters. The mineral composition of the produced ceramics was found by X-Ray tests. Tests results showed that all of the produced ceramics filters composed mainly of low Cristobalte and Tridoymite in addi
... Show MoreNanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were c
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThis research was aimed to study the efficiency of microfiltration membranes for the treatment of oily wastewater and the factors affecting the performance of the microfiltration membranes experimental work were includes operating the microfiltration process using polypropylene membrane (1 micron) and ceramic membrane (0.5 micron) constructed as candle; two methods of operation were examined: dead end and cross flow. The oil emulsion was prepared using two types of oils: vegetable oil and motor oil (classic oil 20W-50). The operating parameters studied are: feed oil concentration 50 – 800 mg/l, feed flow rate 10 – 40 l/h, and temperature 30 – 50 oC, for dead end and cross flow microfiltration.
It was found that water flux decrea