The study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parameters for 10 sampling times. Obviously, with the increasing number of parameters, the value of the index will change. To minimize the effect of eclipse that arises in WQI and to solve the problem of overlapping quality and pollution, this study has created another index linked with IQWQI, which included both the quality and the degree of pollution. The second index is called the Environmental Risk Index (ERI), where only the variables that exceed the permissible environmental limits were included. Sensitivity Analysis was done to predicate IQWQI and to determine the most influential parameters in the IQWQI score; two types of models were chosen for the run of the sensitivity test, which are the Artificial Neural Network Regression (ANNR) and Backward Linear Regression (BLR). The results of IWOI and ERI for freshwater use during the dry season were very poor water quality with a high degree of risk. While in the wet season, both indices' values ranged from poor water quality to very poor water quality with a high degree of risk.
This research is considered one of the important researches in Maysan Governorate, as it focuses on the construction of helicopter airport project in the oil fields of the Maysan Oil Company, where the oil general companies in Maysan Governorate suffer from the cost of transporting the foreign engineering experts and the governing equipment of sustaining oil industry from Iraq's international airports to oil fields and vice versa. Private international transport companies transport foreign engineering from the oil fields to Iraqi airports and vice versa, and other international security companies take action to provide protection for foreign engineering experts during transportation. Hence, this process is very costly.
&nbs
... Show MoreBN Rashid, AJES, 2014
Hydrochloric acid (HCl) is a substance that is frequently utilized in industrial operations for important tasks such as chemical cleaning and pickling metallic surfaces.Therefore, the corrosion inhibition ability of three newly synthesized quinazoline derivatives namely, 3-allyl-2-(propylthio) quinazolin-4(3H)-one) (APQ), (3-allyl-2-(allylthio) quinazolin-4(3H)-one) (AAQ), (3-allyl- 2-( Prop -2-yn -1-ylthio) Quinazolin - 4 (3H) - one) (AYQ) were theoretically determined and these compounds were characterized using Fourier Transform Infra-Red (FTIR) and 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic. A series of quantum chemical properties of these derivatives: EHOMO, ELUMO, energy gap (ΔE),dipole moment (μ), hardness (η), soft
... Show MoreNanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pres
... Show MoreThe oxidative degradation of Orange G dye by nanosized CeO2 catalyst has been performed in this study. The catalyst was prepared by precipitation method. Various characterization techniques were carried out to study the physical and chemical properties of the synthesized catalyst. The XRD result confirms well the formation of CeO2 cubic phase. The FTIR result showed the effect of calcination temperature for CeO2 was clearly observed due to reduction in band intensity compared to uncalcined Ce nitrate sample. Meanwhile, the diffused reflection spectra recorded reflection spectra at 414 nm with an energy gap of 3.2 ev. The decolorization of Orange G dye by oxidation process were carried out unde
... Show More