Preferred Language
Articles
/
bsj-927
Hybrid Cipher System using Neural Network
...Show More Authors

The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding lengths. In our work, there are two types of keys; the first type is the keystream that is adopted by the stream cipher stage with optimal length (length of the keystream greater or equal the message length); and the second key type is the final weights that are obtained from the learning process within the neural network stage, So we can represent our work as an update or development for using the neural network to enhance the security of stream cipher. As a result for a powerful hybrid design, the resulted cipher system provides a high degree of security which satisfies the data confidentially which is the main goal of the most cryptography systems.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Environmental Pollution
Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models
...Show More Authors

View Publication
Crossref (96)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Access
Wrapper and Hybrid Feature Selection Methods Using Metaheuristic Algorithms for English Text Classification: A Systematic Review
...Show More Authors

Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall

... Show More
View Publication Preview PDF
Scopus (46)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Fri Aug 12 2022
Journal Name
Future Internet
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr

... Show More
View Publication Preview PDF
Scopus (31)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering
Transient Stability Enhancement and Critical Clearing Time Improvement for Kurdistan Region Network using Fact Configuration
...Show More Authors

The Electrical power system has become vast and more complex, so it is subjected to sudden changes in load levels. Stability is an important concept which determines the stable operation of the power system. Transient stability analysis has become one of the significant studies in the power system to ensure the system stability to withstand a considerable disturbance. The effect of temporary occurrence can lead to malfunction of electronic control equipment. The application of flexible AC transmission systems (FACTS) devices in the transmission system have introduced several changes in the power system. These changes have a significant impact on the power system protection, due to differences inline impedance, line curre

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Extraction Drainage Network for Lesser Zab River Basin from DEM using Model Builder in GIS
...Show More Authors

ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, auto

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
International Journal Of Science And Research (ij
Mathematical Models for Predicting of Organic and Inorganic Pollutants in Diyala River Using AnalysisNeural Network
...Show More Authors

Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte

... Show More
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Nano Fluid Detection for HPHE System Using Different Lasers
...Show More Authors

Among the different passive techniques heat pipe heat exchanger (HPHE) seems to be the most effective one for energy saving in heating ventilation and air conditioning system (HVAC). The applications for nanofluids with high conductivity are favorable to increase the thermal performance in HPHE. Even though the nanofluid has the higher heat conduction coefficient that dispels more heat theoretically but the higher concentration will make clustering .Clustering is a problem that must be solved before nanofluids can be considered for long-term practical uses. Results showed that the maximum value of relative power is 0.13 mW at nanofluid compared with other concentrations due to the low density of nanofluid at this concentration. For highe

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Automatic Health Speech Prediction System Using Support Vector Machine
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Bioremediation of Soil Contaminated with Diesel using Biopile system
...Show More Authors

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the a

... Show More
Crossref (3)
Crossref