The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding lengths. In our work, there are two types of keys; the first type is the keystream that is adopted by the stream cipher stage with optimal length (length of the keystream greater or equal the message length); and the second key type is the final weights that are obtained from the learning process within the neural network stage, So we can represent our work as an update or development for using the neural network to enhance the security of stream cipher. As a result for a powerful hybrid design, the resulted cipher system provides a high degree of security which satisfies the data confidentially which is the main goal of the most cryptography systems.
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MorePrediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show MoreThe study using Nonparametric methods for roubust to estimate a location and scatter it is depending minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .
It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu
... Show More