Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons. The virus was swiftly gone viral around the world and a lot of fatalities and cases growing were recorded on a daily basis. CXR can be used to monitor the effects of COVID-19 on lung tissue. This study examines a comparison analysis of k-nearest neighbors (KNN), Extreme Gradient Boosting (XGboost), and Support-Vector Machine (SVM) are some classification approaches for feature selection in this domain using The Moth-Flame Optimization algorithm (MFO), The Grey Wolf Optimizer algorithm (GWO), and The Glowworm Swarm Optimization algorithm (GSO). For this study, researchers employed a data set consisting of two sets as follows: 9,544 2D X-ray images, which were classified into two sets utilizing validated tests: 5,500 images of healthy lungs and 4,044 images of lungs with COVID-19. The second set includes 800 images, 400 of healthy lungs and 400 of lungs affected with COVID-19. Each image has been resized to 200x200 pixels. Precision, recall, and the F1-score were among the quantitative evaluation criteria used in this study.
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
For many years controlled shot peening was considered as a surface treatment. It is now clear that the performance of control shot peening in terms of fatigue depends on the balance between its beneficial (compressive residual stress and work hardening) and beneficial effects (surface hardening).
The overall aim of this paper is to study the effects of aggressive shot peening on fatigue life of 7075 – T6 aluminum alloy. The fatigue life reduction factor (LRF) due to the aggressive shot peening was established and empirical relations were proposed to describe the behavior of LRF, roughness and fatigue life. The benefits of shot peering in terms of fatigue life are dependent on the shot peening time (SPT).
... Show MoreThe objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also
... Show MoreIn recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor
... Show MoreIn the current research, we investigated the absorption spectrum for R590 and C480 dyes in ethanol solvent for different dye solution concentrations of 10-4, 10-5 and 10-6M. These dyes have been prepared and studied before and after gamma irradiation (first, second ionization) using cesium-137 source with absorbed doses of 18.36 Gy (time exposure of 10 days) and 73.44 Gy (with time exposure of 40 days). We noticed that the absorption intensity was decreased with decreasing concentration, before gamma irradiation while the absorption spectrum peak shifted towards the short wavelength (blue shift). It was also found that the intensity of absorption spectrum increased and shifted the absorption spectrum peak towards the long wavelength (red
... Show MoreThis research seeks through the adoption of two basic variables, where he considered the actuarial experience as an independent variable, while the process of accepting the risk and dimensions related to it is a dependent variable, the research was adopted to present the data achieved by the company during the life insurance business during the adoption of actuarial experience at the beginning of its work where Adoption of the historical method in the analysis of those data to prove the researcher's opinion, through the analysis of data (5 years) for the first period, which extends between (1975-1979), the period during which the company adopted the actuarial experience at the time, also taken data for the same dimensions related to the
... Show MoreBiosensor is defined as a device that transforms the interactions between bioreceptors and analytes into a logical signal proportional to the reactants' concentration. Biosensors have different applications that aim primarily to detect diseases, medicines, food safety, the proportion of toxins in water, and other applications that ensure the safety and health of the organism. The main challenge of biosensors is represented in the difficulty of obtaining sensors with accuracy, specific sensitivity, and repeatability for each use of the patient so that they give reliable results. The rapid diversification in biosensors is due to the accuracy of the techniques and materials used in the manufacturing process and the interrelationshi
... Show MoreThis paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreWe propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show More