Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons. The virus was swiftly gone viral around the world and a lot of fatalities and cases growing were recorded on a daily basis. CXR can be used to monitor the effects of COVID-19 on lung tissue. This study examines a comparison analysis of k-nearest neighbors (KNN), Extreme Gradient Boosting (XGboost), and Support-Vector Machine (SVM) are some classification approaches for feature selection in this domain using The Moth-Flame Optimization algorithm (MFO), The Grey Wolf Optimizer algorithm (GWO), and The Glowworm Swarm Optimization algorithm (GSO). For this study, researchers employed a data set consisting of two sets as follows: 9,544 2D X-ray images, which were classified into two sets utilizing validated tests: 5,500 images of healthy lungs and 4,044 images of lungs with COVID-19. The second set includes 800 images, 400 of healthy lungs and 400 of lungs affected with COVID-19. Each image has been resized to 200x200 pixels. Precision, recall, and the F1-score were among the quantitative evaluation criteria used in this study.
The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production
... Show MoreBased on the results of standard penetration tests (SPTs) conducted in Al-Basrah governorate, this research aims to present thematic maps and equations for estimating the bearing capacity of driven piles having several lengths. The work includes drilling 135 boreholes to a depth of 10 m below the existing ground level and three standard penetration tests (SPT) at depths of 1.5, 6, and 9.5 m were conducted in each borehole. MATLAB software and corrected SPT values were used to determine the bearing capacity of driven piles in Al-Basrah. Several-order interpolation polynomials are suggested to estimate the bearing capacity of driven piles, but the first-order polynomial is considered the most straightforward. Furthermore, the root means squar
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah
... Show More<span lang="EN-US">We are living in the 21<sup>st</sup> century, an era of acquiring necessity in one click. As we, all know that technology is continuously reviving to stay ahead of advancements taking place in this world of making things easier for mankind. Technology has been putting his part in introducing different projects as we have used the field programmable gate arrays (FPGAs) development board of low cost and programmable logic done by the new evolvable cyclone software is optimized for specific energy based on Altera Cyclone II (EP2C5T144) through which we can control the speed of any electronic device or any Motor Control IP product targeted for the fan and pump. Altera Cyclone FPGAs’ is a board thro
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreWater produced from power plants is one of the most important sources of water pollution, especially for areas like Baghdad, Contaminated industrial wastewater is a major environmental challenge due to the rapid growth of industries, leading to increased accumulation of harmful pollutants in water resources, the work is intended to study the impact of water generated from a power plant in the south on the level of heavy metals before and after the treatment process and after its discharge to the Tigris River. Objective is to determine the extent of heavy metals such as iron, copper, chromium, and zinc concentration in water extracted from various points and subsequently study the monthly variations of these elements with a view to assessmen
... Show More
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show More