Preferred Language
Articles
/
bsj-9236
Comparative Analysis of MFO, GWO and GSO for Classification of Covid-19 Chest X-Ray Images
...Show More Authors

Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons. The virus was swiftly gone viral around the world and a lot of fatalities and cases growing were recorded on a daily basis. CXR can be used to monitor the effects of COVID-19 on lung tissue. This study examines a comparison analysis of k-nearest neighbors (KNN), Extreme Gradient Boosting (XGboost), and Support-Vector Machine (SVM) are some classification approaches for feature selection in this domain using The Moth-Flame Optimization algorithm (MFO), The Grey Wolf Optimizer algorithm (GWO), and The Glowworm Swarm Optimization algorithm (GSO). For this study, researchers employed a data set consisting of two sets as follows: 9,544 2D X-ray images, which were classified into two sets utilizing validated tests: 5,500 images of healthy lungs and 4,044 images of lungs with COVID-19. The second set includes 800 images, 400 of healthy lungs and 400 of lungs affected with COVID-19. Each image has been resized to 200x200 pixels. Precision, recall, and the F1-score were among the quantitative evaluation criteria used in this study.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 09 2023
Journal Name
Plos One
A cross-sectional analysis of the predictors of COVID-19 vaccine uptake and vaccine hesitancy in Iraq
...Show More Authors
Background

Vaccine hesitancy poses a significant risk to global recovery from COVID-19. To date however, there is little research exploring the psychological factors associated with vaccine acceptability and hesitancy in Iraq.

Aim

To explore attitudes towards COVID-19 vaccination in Iraq. To establish the predictors of vaccine uptake and vaccine hesitancy in an Iraqi population.

Methods

Using a cross-sectional design, 7,778 participants completed an online questionnaire exploring their vaccination status, likelihood of infection, perc

... Show More
View Publication
Scopus (11)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Comparative Study of Gamma- Ray Shielding Parameters for Different Epoxy Composites
...Show More Authors

In the current work various types of epoxy composites were added to concrete to enhance its effectiveness as a gamma- ray shield. Four epoxy samples of (E/clay/B4C) S1, (E/Mag/B4C) S2, (EPIL) S3 and (Ep) S4 were used in a comparative study of gamma radiation attenuation properties of these shields that calculating using Mont Carlo code (MCNP-5). Adopting Win X-com software and Artificial Neural Network (ANN), µ/ρ revealed great compliance with MCNP-5. By applying (µ/ρ) output for gamma at different energies, HVL, TVL and MFP have been also estimated. ANN technique was simulated to estimate (µ/ρ) and dose rates. According to the results, µ/ρ of all epoxy samples scored higher than standard concrete. Both S2 and S3 samples having h

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Some Numerical Simulation Techniques for COVID-19 Model in Iraq
...Show More Authors

The aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Classification of Optical Images of Cervical Lymph Node Cells
...Show More Authors
Abstract<p>the study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Al–bahith Al–a'alami
The Iraqi Journalistic Treatment of COVID-19 pandemic
...Show More Authors

This research aims to investigate the approaches adopted by Iraqi newspapers in addressing the COVID-19 pandemic crisis. Employing a descriptive methodology and survey technique, the study conducts content analysis on articles published in three prominent newspapers: Al-Sabah, Al-Mada, and Tareeq Al-Shaab. A multi-stage sampling method was employed, encompassing 260 issues of the aforementioned newspapers. Data collection involved the use of a content analysis questionnaire, with the "How it was said?" method utilized to determine analysis categories.
The results showed that Al-Sabah newspaper adopted a positive approach in addressing COVID-19-related topics, while Al-Mada newspaper remained neutral, and Tare

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Planner And Development
Mapping Paddy Rice Fields Using Landsat and Sentinel Radar Images in Urban Areas for Agriculture Planning
...Show More Authors

     This research develops a new method based on spectral indices and random forest classifier to detect paddy rice areas and then assess their distributions regarding to urban areas. The classification will be conducted on Landsat OLI images and Landsat OLI/Sentinel 1 SAR data. Consequently, developing a new spectral index by analyzing the relative importance of Landsat bands will be calculated by the random forest. The new spectral index has improved depending on the most three important bands, then two additional indices including the normalized difference vegetation index (NDVI), and standardized difference built-up index (NDBI) have been used to extract paddy rice fields from the data. Several experiments being

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 16 2021
Journal Name
Journal Of Clinical Laboratory Analysis
Hematological changes associated with COVID‐19 infection
...Show More Authors
Abstract<sec><title>Background

The unresolved COVID‐19 pandemic considerably impacts the health services in Iraq and worldwide. Consecutive waves of mutated virus increased virus spread and further constrained health systems. Although molecular identification of the virus by polymerase chain reaction is the only recommended method in diagnosing COVID‐19 infection, radiological, biochemical, and hematological studies are substantially important in risk stratification, patient follow‐up, and outcome prediction.

Aim

This narrative review summarized the hematological changes including the blood indices, coagulative indicator

... Show More
View Publication
Scopus (45)
Crossref (44)
Scopus Clarivate Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Assessing the Activity of Renin and GST in the Serum of Ladies Suffering from Polycystic Ovary Syndrome and COVID-19 to Predict the Danger of Cardiac Disease
...Show More Authors

The coronavirus-pandemic has a major impact on women's-mental and physical-health. Polycystic-ovary-syndrome (PCOS) has a high-predisposition to many cardiometabolic-risk factors that increase susceptibility to severe complications of COVID-19 and also exhibit an increased likelihood of subfertility. The study includes the extent of the effect of COVID-19-virus on renin-levels, glutathione-s-transferase-activity and other biochemical parameters in PCOS-women. The study included 120 samples of ladies that involved: 80 PCOS-patients, and 40 healthy-ladies. Both main groups were divided into subgroups based on COVID-19 infected or not. Blood-samples were collected from PCOS-patients in Kamal-Al-Samara Hospital, at the period between Decembe

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Apr 04 2010
Journal Name
Journal Of Educational And Psychological Researches
Translation & Adaptation of(Patterns) & (Assembly) Scales of The Flanagan Aptitude Classification Tests (FACT)
...Show More Authors

The Flanagan Aptitude Classification Tests (FACT) assesses aptitudes that are important for successful performance of particular job-related tasks. An individual's aptitude can then be matched to the job tasks. The FACT helps to determine the tasks in which a person has proficiency. Each test measures a specific skill that is important for particular occupations. The FACT battery is designed to provide measures of an individual's aptitude for each of 16 job elements.

The FACT consists of 16 tests used to measure aptitudes that are important for the successful performance of many occupational tasks. The tests provide a broad basis for predicting success in various occupational fields. All are paper and pen

... Show More
View Publication Preview PDF