Medical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons. The virus was swiftly gone viral around the world and a lot of fatalities and cases growing were recorded on a daily basis. CXR can be used to monitor the effects of COVID-19 on lung tissue. This study examines a comparison analysis of k-nearest neighbors (KNN), Extreme Gradient Boosting (XGboost), and Support-Vector Machine (SVM) are some classification approaches for feature selection in this domain using The Moth-Flame Optimization algorithm (MFO), The Grey Wolf Optimizer algorithm (GWO), and The Glowworm Swarm Optimization algorithm (GSO). For this study, researchers employed a data set consisting of two sets as follows: 9,544 2D X-ray images, which were classified into two sets utilizing validated tests: 5,500 images of healthy lungs and 4,044 images of lungs with COVID-19. The second set includes 800 images, 400 of healthy lungs and 400 of lungs affected with COVID-19. Each image has been resized to 200x200 pixels. Precision, recall, and the F1-score were among the quantitative evaluation criteria used in this study.
Economic organizations operate in a dynamic environment, which necessitates the use of quantitative techniques to make their decisions. Here, the role of forecasting production plans emerges. So, this study aims to the analysis of the results of applying forecasting methods to production plans for the past years, in the Diyala State Company for Electrical Industries.
The Diyala State Company for Electrical Industries was chosen as a field of research for its role in providing distinguished products as well as the development and growth of its products and quality, and because it produces many products, and the study period was limited to ten years, from 2010 to 2019. This study used the descriptive approa
... Show MoreThis research began by explaining its variables and dimensions especially the digital gap, which the authors explained it elaborately beginning with the concept, the reasons blind its emergence of its measurement, and how to treat it. The authors supposed the potentiality of relying on enforcing knowledge in general and the groups suffer from this gap in particular, especially the targeted knowledge to treat its subject.
As enforcing knowledge usually depends on some strategies or choices of organizational orientation among them is learning and training from one side, and communication, as an indicating factor for organizational effectiveness as the authors refer from the other side.
Multiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreThe current research aims to identify the extent to which cognitive economics skills are included in the content of the chemistry textbook for the third intermediate grade, and the research sample was represented in the chemistry textbook for the third intermediate grade. A list of knowledge economy skills was prepared (6) main skills (basic skills, communication skills, thinking skills, work skills Group, information-gathering skill, behavioral skills (and (20) sub-skills) (reading, writing, operations, computer skills and employability, oral expression and written communication, dialogue, persuasion, influence and arousal, analysis, problem-solving, decision-making, suggestions and hypotheses and employing them. Controlling, directing
... Show MoreThe aim of the research is to identify the imaginative thinking skills included in the content of the chemistry textbook for fifth-grade students in biological sciences at the preparatory stage, which is approved by the Ministry of Education, General Directorate of Curricula in the academic year 2020-2021. To achieve the objective of the study, the researcher depends on the previous studies in the field and content of imaginative thinking skills for preparing a list of skills that includes (3) essential skills and (11) sub-skills and (28) items related to all skills. The researcher adopted the analytical descriptive approach because of its appropriation of the goals of the research. Then the researcher analyzed the content of the book de
... Show MoreThe agricultural sector suffers from many risks and natural disasters, such as droughts and heavy rains that cause floods, as well as hail and agricultural pests, etc., that threaten agricultural activity and reduce it, which leads to the failure of farmers and peasants for fear of being subjected to continuous losses. Nevertheless, we notice almost complete reluctance to move towards agricultural insurance, due to the dependence of farmers on the government, which adopts the principle of compensation instead of agricultural insurance when natural disasters happen despite the difficulties and financial hardship as well as the suspicion of corruption that haunt the compensation process and this represents the most important problem for resea
... Show MoreThe aim for this research is to investigate the effect of inclusion of crack incidence into the 2D numerical model of the masonry units and bonding mortar on the behavior of unreinforced masonry walls supporting a loaded reinforced concrete slab. The finite element method was implemented for the modeling and analysis of unreinforced masonry walls. In this paper, ABAQUS, FE software with implicit solver was used to model and analyze unreinforced masonry walls which are subjected to a vertical load. Detailed Micro Modeling technique was used to model the masonry units, mortar and unit-mortar interface separately. It was found that considering potential pure tensional cracks located vertically in the middle of the mortar and units show
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreIn recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show More