The objective of this study was to isolate and identify the asparaginase-producing bacteria, then purify and characterize the enzyme in order to investigate their properties in the future. Fifteen local bacterial isolates were isolated from various sites in the city of Baghdad, identified by conventional morphological and biochemical procedures, and confirmed using vitek 2 methods, and submitted to primary screening processes for asparaginase production. For secondary screening, eight isolates with the greatest yellow zone ability on a specific solid medium were chosen. Bacillus sp. was reported to have the highest enzyme production (7.5 U/mg proteins). After 24 hours of incubation, submerged fermentation yielded optimal conditions for the production of L-asparaginase (L-ASNase) by the chosen isolate, with medium (2) serving as the optimal medium for production and fructose serving as the optimal source of carbon. In pH 6 at 40°C, Sephadex G-150 gel filtration chromatography was used to purify the enzyme. The final purification folds were increased by 2.5 times, resulting in an enzyme yield of 93.7%. It also showed the highest purified enzyme activity and stability was at 37°C. Also it revealed the highest activity and stability at pH 7.0 and pH 8.0 respectively. Enzyme lost activity when exposed to several metallic ions at concentrations of 1, 5, and 10 mM.
Proteinases (E.C.3.4.21) family are widely distributed in the nature; it was present in animals tissues , plants and microbial cell . Protease was purified from Zahdi seed (Phoenix dactylifera L.) by several steps included ammonium sulphite ppt (75%) saturation and dialyzed against the 80mM sodium phosphate buffer at pH 7.5 . The enzyme specific activity was 407.62 unit/mg protein. The obtained extract was purified by DEAE-Cellulose column followed by gel filtration through Sephacyl S-200 column .The enzyme specific activity ,yield and purification fold were 1873.49 unit/mg protein, 22.99 and 58.42% respectively. The results of protease characterization showed that the molecular weight was 25118 daltons as determined by gel f
... Show MoreSpecific microorganisms can produce bacterial nanocellulose (BNC), with acetic acid bacteria (AAB) being the most active producer. The family Acetobacteraceae includes the obligate aerobic, motile acetic acid bacteria. The BNC has attracted a lot of interest across a wide range of industries, including pharmaceuticals, due to its flexible characteristics, properties, and advantages. The present study was conducted to purify and characterize BNC produced from AAB isolated from apple vinegar. Bacterial nanocellulose was synthesized using a natural date palm liquid medium at pH 6 at 30°C for 8–10 days. The bacterial cellulose produced was then purified using a technique involving 0.1 M sodium hydroxide. To ascertain the surface mor
... Show Moreتم الحصول على 4 عزلات من بكتريا Bacillus sp ودرست قدرتها على انتاج الكايتنيز حيث اظهرت نتائج الغربلة الكمية ان العزلة Bacillu sp A3 هي الاغزر انتاجا وبلغت الفعالية النوعية 3.8وحده/ملغم بروتين.
15 local isolates of Pseudomonas were obtained from 35 samples from several sources such as soil, water and some high-fat foods. The ability of isolates to produce lipase was measured by the size of the clarification zone formed around the colonies on the lipase production medium and by measuring the enzymatic activity and specific enzymatic activity, the isolate M3 was found to be the most efficient for production of the enzyme, This isolate was identified by microscopic, morphological, some biochemical tests and genetic diagnosis of 16S gene sequences by using the (PCR) technique, and then comparing the results obtained with the National Center for Biotechnology Inform
... Show MoreCatalase (EC 1.11.1.6) is a well known enzyme which exists in almost all living creatures exposing to oxygen (such as plants, bacteria, and animals). It is a very necessary enzyme to protect the cell from oxidative detriment by reactive oxygen species (ROS). The aim of this study is the partial purification and characterization of Catalase enzyme from Banana peels. In this study, fresh banana peels are treated with 70 % ethanol ,further separated with chloroform ,water and ethyl acetate respectively .The supernatant of the enzymatic sample which is treated with chloroform is loaded into gel filtration column with Sephadex G-100 (1.0 x 90 cm) equilibrated with pH7 buffer media (phosphate buffer 0.1 M). Kinetic studies of the purified en
... Show MoreIn this study, a review of variety of processes that are used in the treatment produced water prior to reuse or to responsible disposal are presented with their environmental issues and economical benefits. Samples of produced water from five locations in Rumaila oilfield/in south of Iraq were taken and analyzed for their contents of brine, some heavy metals, total suspended solids and oil and grease. Moreover, two samples of water were treated using reverse osmosis technique which showed its ability to treat such contaminated water. The results showed that the environmental impact of produced water arises from its chemical composition; i.e., its salt content, its heavy metals, and hydrocarbon contents.
We studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show MoreXanthomonas axonopodis pv glycines (Xag) is a pathogen that causes pustule disease in soybeans. Many
techniques for controlling this disease have been widely developed, one of which is the use of biological agents.
Bacillus sp. from the soybean phyllosphere is a biological agent that has the potential to suppress the
development of pustule disease. One of the biological control mechanisms is through biochemical induction
of plant resistance which includes the accumulation of phenols, salicylic acid compounds, and peroxidase
enzymes. Bacillus subtilis JB12 and Bacillus velezensis ST32 are two bacteria isolated from the soybean
phyllosphere which have previously been known to suppress Xag through an anti
A local isolate Bacillus subtilis was used, which producing
thennophilic complex enzyme having similar activity of endogluganase
enzyme ( Endo-l,4-B-Dglucanase ).
Partially digested chromosomal DNA of Bacillus subtilis by Eco
Rl restriction enzyme randomly cloned into Eco Rl pSU10l shuttle vector. The resulted hybrid plasmid was transformed into protoplast of
Streptomyces sp. SH-H.
The result revealed  
... Show More