In this study, new heterocyclic compounds were synthesized through the cyclization reactions of o-phenylenediamine (1) with various organic reagents. Benzodiazepine derivatives (2-4) were obtained by reaction of (1) with ethylacetoacetate, malonic acid and acetyl acetone.Treatment of compound (1) with chloroacetamide, chloroacetic acid, p-bromophenacyl bromide and oxalic acid dihydrate afforded quinoxaline derivatives (5-8), respectively. Reaction of compound (1) with benzoic acid, piperonal, cyclohexanone and carbon disulfide resulted in the formation of compounds (9-12), respectively. Finally, reaction of compound (12) with chloroacetic acid in the presence of potassium hydroxide produced compound (13).
Reaction of Na2PdCl4 with benz-1,3-imidazole-2-thione or (bzimtH) benz-1,3-thiazoline2-thione (bztztH) in ethanol / NE3 afford complexes of the type [Pd(bzimt)2](1) and [Pd(bztzt)2](2) respectively. Treatment of [Pd(L)2] L= bzimt or bztzt with bidentate ligands (N^N) where N^N= bipyridine (Bipy) , phenanthroline (Phen) , ethylene diamine , or N,N′dimethylethylene diamine afford mononuclear complexes of the type [PdL2(N^N)]. The bzimt and bztzt ligands are coordinated as bidentate chelating ligands through the S and N in (1) and (2) whereas bonded as a monodentate fashion via the sulfur atom in other complexes. The prepared complexes were characterized by elemental CHN analysis, ir and 1H nmr spectra.
This work deals with preparation of Sulfated Zirconia catalyst (SZ) for isomerization of n-hexane model and refinery light naphtha, as well as enhanced the role of promoters to get the target with the mild condition, stability, and to prevent formation of coke precursors on strong acidic sites of the catalyst. The prepared SZ catalysts were characterization by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer –Emmett-Teller (BET) surface area analysis, Thermogravimetric Analysis (TGA), Scanning Electron Microscope (SEM) and atomic force microscopy (AFM) Analyzer. The results illustrate that the maximum conversion and selectivity for n-hexane isomerization with Ni-WSZ and operating temperature of 150 °C
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreThis research includes synthesis of new heterocyclic derivatives of N-benzyl-5-bromoisatin. New 1, 2, 4-triazole, oxazoline and thiazoline derivatives of [N-benzyl-5-bromo-3-(Ethyliminoacetate)-indole-2-one] (2) have been synthesized. The preparation process started by the reaction of 5-bromoisatin with sodium hydride in dimethylformamide (DMF) at 0°C, gave suspension of sodium salt of 5-bromoisatin and subsequent reaction with benzylchloride to give N-benzyl-5-bromoisatin (1). Compound (1) reacted with ethylglycinate (Schiff base) obtained the intermediate compound (2) which reacted with different reagents in two ways. The first way, compound (2) reacted with (hydrazine hydrate, semicarbazide, phenylsemicarbazide and thiosemicarbazide)
... Show MoreFour new copolymers were synthesized from reaction of bis acid monomer 3-((4-carboxyphenyl) diazenyl)-5-chloro-2-hydroxybenzoic acid with five diacidhydrazide in presence of poly phosphoric acid. The resulted monomers and copolymers have been characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopy as well as EIMs technique. The number averages of molecular weights of the copolymers are between 4822 and 9144, and their polydispersity indexes are between 1.02 and 2.15. All the copolymers show good thermal stability with the temperatures higher than 305.86 C when losing 10% weight under nitrogen. The cyclic voltammetry (CV) measurement and the electrochemical band gaps (Eg) of these copolymers are found below 2.00 ev.