The research involved attempt to inhibit the corrosion of Al-Si-Cu alloy in 2.5x10-3 mol.dm-3 NaOH solution (pH=11.4) by addition of six different inhibitors with three concentrations (1x10-3, 1x10-2, and 0.1 mol.dm-3). These inhibitors include three organic materials (sodium acetate, sodium benzoate, and sodium oxalate) and three inorganic materials (sodium chromate, disodium phosphate, and sodium sulphate). The data that concerning polarization behaviour are calculates which include the corrosion potential (Ecorr) and current density (icorr), cathodic and anodic Tafel slopes (bc & ba), and polarization resistance (Rp). Protection efficiency (P%) and activation energy (Ea) values were calculated for inhibition by the six inhibitors. The results indicated the effect of temperature on the inhibition in basic media.
The investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H
The effect of mixed corrosion inhibitors in cooling system was evaluated by using carbon steel specimens and weight loss analysis. The carbon steel specimens immersed in mixture of sodium phosphate (Na2 HPO4) used as corrosion inhibitor and sodium glocunate (C6 H11 NaO7) as a scale dispersant at different concentrations (20,40, 60, 80 ppm) and at different temperature (25,50,75 and 100)ºC for (1-5) days. The corrosion inhibitors efficiency was calculated by using uninhibited and inhibited water to give 98.1%. The result of these investigations indicate that the corrosion rate decreases with the increase the corrosion inhibitors concentration at 80 ppm and at 100ºC for 5 days, (i.e,
... Show MoreSeven Zn-dithiocarbamate complexes were suggested as corrosion inhibitors. Density functional theory (DFT) was used to predict the ability of inhibition. Room temperature conditions were applied to suggest the optimization of complexes, physical properties, and corrosion parameters. In addition, the HOMO, LUMO, dipole moment, energy gap, and other parameters were used to compare the inhibitors efficiency. Gaussian 09 software with LanL2DZ basis set was used. Total electron density (TED) and electrostatic surface potential (ESP) were utilized to show the sites of adsorption according to electron density.
In this study many specimen s were prepared from 2024-T3 Aluminum alloy for corrosion test by the dimensions of (15*15*3) mm according to ASTM G71-31 and then subjected to shot peening process at different time (15, 30, 45) minutes using steel ball having a diameter of 2.75 mm and Rockwell Hardness of 55RC to induce compressive residual stress which were measured using X-Ray diffraction method, surface roughness and hardness were tested before and after peening. Electrochemical corrosion test by Tafel extrapolation method was carried out in an environment of 3 .5% NaCl solutions (sea water) where Corrosion rate calculated using Tafle equation.
The obtained results show a favorable influence of SP treatment
... Show MoreThis research includes the synthesis of some new N-Aroyl-N \ -Aryl thiourea derivatives namely: N-benzoyl-N \ -(p-aminophenyl) thiourea (STU1), N-benzoyl-N \ -(thiazole) thiourea (STU2), N-acetyl-N ` -(dibenzyl) thiourea (STU3). The series substituted thiourea derivatives were prepared from reaction of acids with thionyl chloride then treating the resulted with potassium thiocyanate to affored the corresponding N-Aroyl isothiocyanates which direct reaction with primary and secondary aryl amines, The purity of the synthesized compounds were checked by measuring the melting point and Thin Layer Chromatography (TLC) and their structure, were identified by spectral methods [FTIR,1H-NMR and 13C-NMR].These compounds were investigated as a
... Show MoreCorrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determin
... Show MoreCu-Al-Ni shape memory alloy specimens has been fabricated using powder metallurgy technique with tube furnace and vacuum sintering environment , three range of Nb powder weight percentage (0.3,0.6,0.9)% has been added. Micro hardness and sliding wear resist has been tested followed by X-ray diffraction, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX) for micro structure observation. The experimental test for the samples has showed that the increase of Nb powder weight percentage in the master alloy has a significant effect on increasing the hardness and decreasing the wear resist therefore it will enhance the mechanical properties for this alloy.
The corrosion behavior of Zn in 0.1 M HCl solution containing various concentration of Ampicillin range (2 x 10-4 – 1x10-3) M was investigated. The corrosion rates were measured by using weight loss measurement and polarization curve, The results of polarization method obtained showed that the rate of corrosion of zinc increased with increasing the temperature from 293K to 323K and the values of inhibition efficiency of ampicillin increased with increasing the temperature and AMP concentrations, the results showed that AMP caused to protection efficiency reached to 88.8% when (1x10-3) M AMP concentration was used in 323K. The coverage (θ) of metal surface by AMP could be obtained from the rate of corrosion in the presence and absence
... Show More