Bioremoval of chromium from wastewater of tannery factory in Iraq was studied. The bacteria Proteus vulgaris 7E showed an enhanced capability in biosorping chromium when its concentration increased in the solution, reaching a maximum of 476,7 mg/ ml out of 492 mg/ ml under optimum conditions at pH 6 and 50°C at one hour contact time and biomass of 1 mg/ml. The present results showed that dead cells of P. vulgaris 7E biosorbed 87.41 mg/ml of chromium in comparison with91.18 mg/ml of chromium biosorbed by living cells, this indicates the insignificant effect of physiological state of cells. It was found that the above biosorption is physico-chemical process depends upon electrostatic attraction forces. The results has illustrated that the most efficient eluting solution was 0.1M HCL which recovered 85% of biosorbed chromium. P. vulgaris 7E was able to remove completely all chromium from the waste water taken from tannery factory.
In this study, sawdust as a cheap method and abundant raw material was utilized to produce active carbon (SDAC). Physiochemical activation was utilized where potassium hydroxide used as a chemical activating agent and carbon dioxide was used as a physical activating agent. Taguchi method of experimental design was used to find the optimum conditions of SDAC production. The produced SDAC was characterized using SEM to investigate surface morphology and BET to estimate the specific surface area. SDAC was used in aqueous lead ions adsorption. Adsorption process was modeled statistically and represented by an empirical model. The highest specific surface area of SDAC was 688.3 m2/gm. Langmuir and Freundlich isotherms were used to
... Show MoreNumerical simulations have been investigated to study the external free convective heat transfer from a vertically rectangular interrupted fin arrays. The continuity, Naver-Stockes and energy equations have been solved for steady-state, incompressible, two dimensional, laminar with Boussiuesq approximation by Fluent 15 software. The performance of interrupted fins was evaluated to gain the optimum ratio of interrupted length to fin length (
Five different bacterial isolates [ Vibrio cholera (Ogawa) , Vibrio cholera (Inaba) , Salmonella typhi , Salmonella paratyphi and ? Salmonella typhimurium ] were obtained from the Central Health Laboratory . Both sensitivity tests (MIC , MBC and wells method ) against these bacteria were performed by using the aqueous of leaves extract of Marjoram plant. The results cleared that the values of MIC for Vibrio cholera serotypes Ogawa and Inaba were 100 mg/ml , while the value of MBC was 200 mg/ml. The value of the Inhibition zone at 100 mg /ml concentration for both Ogawa and Inaba were 13 mm and 9 mm respectively. Our results showed that the three types of Salmonella didn’t show any inhibition zone at 200 mg/ml .
Abstract
The present paper focuses in a particular on the study of the biochar production conditions by the thermal pyrolysis of biomass from local Iraqi palm fronds, in the absence of oxygen. The biochar product can be used as soil improvers. The effect of temperature on the extent of the thermal pyrolysis process was studied in the range from 523 to 773K with a residence time of 15 minutes and nitrogen gas flow rate of 0.1 l/min. The produced biochar was characterized as will as biomass and degradation products. The results showed that the rate of biochar production decreases with the increasing in temperature, also it was noted that the normalized biochar surface area and pore size increases with the increasin
... Show MoreThis research aimed to examine the effect of concentration of dyes stuff, contact time, temperature and ratio of adsorbent weight in (gm) to volume of solution in (ml) on the percentage removal. Two dyes were used; direct blue 6 and direct yellow and the adsorbent was the maize cob. Batch experiments were performed by contacting different weights of adsorbent with 50 ml of solution of desired concentration with continuous stirring at various temperatures. The percentage of removal was calculated and the maximum percentage of removal was 80%. And as the concentration of solution, contact time, temperature and the ratio of adsorbent to volume of solution increase the percentage of removal increase.


