Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.
In this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreThis study aims at identifying the notion of Post-Occupancy Evaluation (POE) pertinent to the performance of three general hospitals constructed inside the Sulaimani City, tracing the relationship between the quality of the indoor environments and medical staff (doctors and nurses) satisfaction level. Using some indoor environment elements in the right way will positively influence the mood, stress level of the medical staff, and patient recovery as a result. The POE toolkits (AEDET and ASPECT) have been implemented on targeted wards at the selected hospitals. AEDET and ASPECT questionnaires were distributed among 152 medical staff to obtain their perspectives. In total, 112 valid questionnaires were received. The medica
... Show MoreObjective: Comprehending microbial diversity and antibiotic resistance patterns is essential for efficient treatment protocols. This study sought to determine the incidence of bacterial and fungal pathogens responsible for burn and wound infections and their antibiotic susceptibility profiles. Methods: This cross-sectional study involved 140 patients with burn or wound infections. Sterile swabs and pus aspiration were employed to collect samples, which were subsequently processed using standard microbiological procedures. Antibiotic resistance was determined using the Kirby-Bauer disc diffusion method, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Data was analysed using IBM SPSS version 25.0, and the Chi-
... Show MoreObjectives. This study was carried out to quantitatively evaluate and compare the sealing ability of Endoflas by using differentobturation techniques. Materials and Methods. After 42 extracted primary maxillary incisors and canines were decoronated, theircanals were instrumented with K files of size ranging from #15 to #50. In accordance with the obturation technique, the sampleswere divided into three experimental groups, namely, group I: endodontic pressure syringe, group II: modified disposable syringe,and group III: reamer technique, and two control groups. Dye extraction method was used for leakage evaluation. Data wereanalyzed using one-way ANOVA and Dunnett’s T3 post hoc tests. The level of significance was set at p<0:05. Results.
... Show MoreIn this study, the energy charging mechanism is mathematically modeled to determine the impact of design modifications on the thermofluidic behavior of a phase change material (PCM) filled in a triplex tube containment geometry. The surface area of the middle tube, where the PCM is placed, is supported by single or multi-internal frustum tubes in vertical triplex tubes to increase the performance of the heating and cooling of the system. In addition to the ordinary straight triplex tubes, three more scenarios are considered: (1) changing the middle tube to the frustum tube, (2) changing the inner tube to the frustum tube, and (3) changing both the internal and central tubes to the frustum tubes. The impact of adopting the tube desig
... Show MoreIn this research, the Williamson-Hall method and of size-strain plot method was employed to analyze X- ray lines for evaluating the crystallite size and lattice strain and of cadmium oxide nanoparticles. the crystallite size value is (15.2 nm) and (93.1 nm) and lattice strain (4.2 x10−4 ) and (21x10−4) respectively. Also, other methods have been employed to evaluate the crystallite size. The current methods are (Sherrer and modified Sherrer methods ) and their results are (14.8 nm) and (13.9nm) respectively. Each method of analysis has a different result because the alteration in the crystallite size and lattice strain calculated according to the Williamson-Hall and size-strain plot methods shows that the non-uniform strain in nan
... Show More