Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.
The extraction process of chlorophyll from dehydrated and pulverized alfalfa plant were studied by percolation method. Two solvent systems were used for the extraction namely; Ethanol-water and Hexane-Toluene systems . The effect of circulation rate, solvent concentration, and solvent volume to solid weight ratio were studied. In both ethanol water, and Hexane-Toluene systems it appears that solvent concentration is the most effective variable.
This paper examines the change in planning pattern In Lebanon, which relies on vehicles as a semi-single mode of transport, and directing it towards re-shaping the city and introducing concepts of "smooth or flexible" mobility in its schemes; the concept of a "compact city" with an infrastructure based on a flexible mobility culture. Taking into consideration environmental, economical and health risks of the existing model, the paper focuses on the four foundations of the concepts of "city based on culture flexible mobility, "and provides a SWOT analysis to encourage for a shift in the planning methodology.
AA wahid, journal mustansiriyah of sports science, 2023
Tin oxide was deposited by using vacuum thermal method on silicon wafer engraved by Computer Numerical Controlled (CNC) Machine. The inscription was engraved by diamond-made brine. Deep 0.05 mm in the form of concentric squares. Electrical results in the dark were shown high value of forward current and the high value of the detection factor from 6.42 before engraving to 10.41 after engraving. (I-V) characters in illumination with powers (50, 100, 150, 200, 250) mW/cm2 show Improved properties of the detector, Especially at power (150, 200, 250) mW/cm2. Response improved in rise time from 2.4 μs to 0.72 μs and time of inactivity improved 515.2 μs to 44.2 μs. Sensitivity angle increased at zone from 40o to 65o.
The research aims to evaluate the current book chemistry fourth grade scientific questions on the classification according to Gallagher And Aschner levels of its four reflexion A cognitive thinking, thinking Convergent , Divergent thinking and osteopathic thinking and evaluating those questions in terms of standards of honesty, inclusiveness and objectivity . The research sample included a book of chemistry for fourth grade scientific for the academic year (2016 - 2017), the same research community and the number of sub - prime questions amounted to (354) Question distributed to the chapters of the book adult (6) chapters, the researchers ends of chapters by classification questions by finding the relative weight of the are
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show More