Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.
Neurolinguistics is a new science, which studies the close relationship between language and neuroscience, and this new interdisciplinary field confirms the functional integration between language and the nervous system, that is, the movement of linguistic information in the brain in receiving, acquiring and producing to achieve linguistic communication; Because language is in fact a mental process that takes place only through the nervous system, and this research shows the benefit of each of these two fields to the other, and this science includes important topics, including: language acquisition, the linguistic abilities of the two hemispheres of the brain, the linguistic responsibility of the brain centers, and the time limit for langua
... Show MoreSelf-repairing technology based on micro-capsules is an efficient solution for repairing cracked cementitious composites. Self-repairing based on microcapsules begins with the occurrence of cracks and develops by releasing self-repairing factors in the cracks located in concrete. Based on previous comprehensive studies, this paper provides an overview of various repairing factors and investigative methodologies. There has recently been a lack of consensus on the most efficient criteria for assessing self-repairing based on microcapsules and the smart solutions for improving capsule survival ratios during mixing. The most commonly utilized self-repairing efficiency assessment indicators are mechanical resistance and durab
... Show MoreThe purpose of the current investigation is to distinguish between working memory ( ) in five patients with vascular dementia ( ), fifteen post-stroke patients with mild cognitive impairment ( ), and fifteen healthy control individuals ( ) based on background electroencephalography (EEG) activity. The elimination of EEG artifacts using wavelet (WT) pre-processing denoising is demonstrated in this study. In the current study, spectral entropy ( ), permutation entropy ( ), and approximation entropy ( ) were all explored. To improve the classification using the k-nearest neighbors ( NN) classifier scheme, a comparative study of using fuzzy neighbourhood preserving analysis with -decomposition ( ) as a dimensionality reduction technique an
... Show MoreIn this review of literature, the light will be concentrated on the role of stem cells as an approach in periodontal regeneration.
The most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreThe current research aims to examine the effect of the rapid learning method in developing creative thinking among second-grade female students in the subject of history. Thus, the researcher has adopted an experimental design of two groups to suit the nature of the research. The sample of the study consists of (36) randomly selected students from Al-Shafaq Secondary School for Women, which are divided randomly into two groups. The first group represents the experimental; it includes (31) students who studied the subject of history using the quick learning method. The second group, on the other hand, is the control group, which consists of (32) students, who studied the same subject using the traditional way. Before starting with the exp
... Show MoreDesigning Teaching Aids and Their Effects on Learning and Retaining Diving and Cartwheel on Floor Exercises in Women’s’ Artistic Gymnastics
The research aimed at designing teaching aids that develop and help retain diving and cartwheel for third year college of physical education and sport sciences students in women’s artistic gymnastics. In addition to that, the researchers aimed at identifying the effect of these aids on learning and retaining cartwheel and diving in floor exercises. The researchers used the experimental method. The subjects were (20) third year female students from the college of physical education and sport sciences/ university of Baghdad sections K and H. the main experiment lasted for
... Show MoreDue to the importance of the extraction process in many engineering and medical industries, in addition to great interest in medicinal plants, in this research, microwave-assisted extraction has been applied to extract some active compounds from Rosmarinus officinalis leaves. The optimal extraction conditions were then determined by calculating the ratio and extraction efficiency. The process has also been described through kinetic study by applying five kinetic models, the Hyperbolic diffusion model, Power low model, the First order reaction model, Elovich's model, and Fick's second law diffusion model and determining their compatibility with the studies operation, and determining the kinetic constants for each model. The result
... Show More