Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.
Cognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper ,
... Show MoreOne of the most critical functions of the government is the devising and planning for the Public Budget for the coming years. Studying any budget of any given state would directly reflect on its intentions and collective direction during a certain time span. Since all allocations represent the government's agenda and time plan for coming years. And the size of each allocation would measure the priority of each budgetary item. Because of the eminent importance of the public budget planning in Iraq, a country of abundant riches and human resources that flow in the national economy, we present this research that would cover the resources versus expenditures of Iraq's public budget endured by the government to sustain its various sec
... Show MoreFamily social institution mission in the community, if and repaired Magistrate society and often lead that institution a positive role in the socialization, but a variety of factors ailing infect system family Vtfkdh role effective and influential in society and stands at the forefront of those factors disintegration family, whether caused by the death of one or both parents, divorce or separation, or whether the result of domestic weakness and poor family behavioral practices. And gaining the study of great importance and that the scarcity of studies that address the problem of delinquency female, is no secret that stand on the fact the role of disintegration family in the events of that problem will help and a large degree in the devel
... Show MoreA new mathematical model describing the motion of manned maneuvering targets is presented. This model is simple to be implemented and closely represents the motion of maneuvering targets. The target maneuver or acceleration is correlated in time. Optimal Kalman filter is used as a tracking filter which results in effective tracker that prevents the loss of track or filter divergency that often occurs with conventional tracking filter when the target performs a moderate or heavy maneuver. Computer simulation studies show that the proposed tracker provides sufficient accuracy.
In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sa
... Show MoreThe aim of this study is to assess the influence of some risks factors on the fistula development after palatoplasty to improve the outcome of the patients
A total of 48 patients (the males were 22, The females were 26) were included in this study. All the patients were examined weekly for the first month postoperatively to assess any breakdown in the wound by inspection and by asking the parents for any nasal regurgitation during fluids feeding.