Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.
This study has aimed to measure the relationship between the skills required for the labor market and the employment of graduates of community colleges at King Khalid University. For gathering the required data, a questionnaire has been designed and distributed to the faculty members of community colleges at King Khalid University in a random sample method. The chosen sample size has covered (123) individuals. Questionnaire forms have been distributed and retrieved from (117) participants. Therefore, the estimated response has reached 95 % of the total sample size. The results of the study have shown that there is not any significant relationship between the skills which the graduates acquire and the requirements of employmen
... Show MoreThe development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B1 and fumonisin B2 by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C18 solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith® RP-18e column
... Show MoreIn this paper, we deal with the problem of general matching of two images one of them has experienced geometrical transformations, to find the correspondence between two images. We develop the invariant moments for traditional techniques (moments of inertia) with new approach to enhance the performance for these methods. We test various projections directional moments, to extract the difference between Block Distance Moment (BDM) and evaluate their reliability. Three adaptive strategies are shown for projections directional moments, that are raster (vertical and horizontal) projection, Fan-Bean projection and new projection procedure that is the square projection method. Our paper started with the description of a new algorithm that is low
... Show MoreIn this paper we present an operational computer vision system for real-time motion detection and recording that can be used in surveillance system. The system captures a video of a scene and identifies the frames that contains motion and record them in such a way that only the frames that is important to us is recorded and a report is made in the form of a movie is made and can be displayed. All parts that are captured by the camera are recorded to compare both movies. This serves as both a proof-of- concept and a verification of other existing algorithms for motion detection. Motion frames are detected using frame differencing. The results of the experiments with the system indicate the ability to minimize some of the problems false detec
... Show MoreAutism is considered as one of the most developmental problems in the world that interfere with children growth and affect their social ,emotional and cognitive development child with autism used to be normal in his growth but in his development parents started to notice that their child characterize by loneliness and withdrawal himself from the surrounding world with some mannerism behaviors these characteristics used to be manifested children during the 1st three year of their life . It appears, one in every 500 birth (The American International Institution for child health 1997. and it would be less in females than makes at 1/4 percent .
Aim is to b
... Show MoreThe expanding use of multi-processor supercomputers has made a significant impact on the speed and size of many problems. The adaptation of standard Message Passing Interface protocol (MPI) has enabled programmers to write portable and efficient codes across a wide variety of parallel architectures. Sorting is one of the most common operations performed by a computer. Because sorted data are easier to manipulate than randomly ordered data, many algorithms require sorted data. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. In this paper, sequential sorting algorithms, the parallel implementation of man
... Show More