These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the process of breaking the feedforward artificial neural network algorithm. Additionally, the result is computed from each ANN during the breaking up process, which is based on the breaking up of the artificial neural network algorithm into multiple ANNs based on the number of ANN layers, and therefore, each layer in the original artificial neural network algorithm is assessed. The best layers are chosen for the crossover phase after the breakage process, while the other layers go through the mutation process. The output of this generation is then determined by combining the artificial neural networks into a single ANN; the outcome is then checked to see if the process needs to create a new generation. The system performed well and produced accurate findings when it was used with data taken from the Vicon Robot system, which was primarily designed to record human behaviors based on three coordinates and classify them as either normal or aggressive.
One of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed
... Show MoreProbiotics are live microbes that give many health benefits to human beings and animals, the most studied and commonly used probiotics are Gram-positive bacteria; lactobacilli and bifidobacteria. At nowadays, Lactobacillus spp. constitute more than two-thirds of the total numbers of probiotic species. The present study aimed to characterize Lactobacillus that locally isolated from human mouth and feces as probiotics. A total of three Lactobacillus isolates; Lactobacillus fermentum Lb2, Lactobacillus rhamnosus Lb9, and Lactobacillus paracasei Lb10 were investigated in respect to acid and bile salts tolerance, antibiotics susceptibility, and cell surface hydrophobicity in vitro using bacterial adhesion to hydrocarbons method. In compa
... Show MoreRepresent a topic occupational safety and health management is one of the priorities of the loading organization in the business environment ,and one of the requirement for the success and its impact on the productivity of workers and their performance in an appropriate working environment .The international responses to the problems that accompany the technological and industrial development of the business environment are the issuance of ISO 45001:2018 aimed at providing an appropriate framework for controlling risks , reducing injuries and work accidents and improving work performance ,after realizing the environmental relationship between safe and sound work with competition .The search’s issue is represented with the exist
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreAfter 2003 Iraq witnessed a rapid development in the number and kind of non-governmental organizations in addition to the increase in their sources.A lot of obstacles and constraints hinder the development of the said organizations and one of the most important and prominent obstacles is their administrative and accounting structure that affect directly on the existence, continuity and survival of these organizations.This research discussed the concept the non-governmental organizations and reaching the assessment of internal control System in these organizations. Therefore, the researcher has assessed the internal control System applied National Olympic Committee of Iraq. The study showed vulnerabilities in the internal control the said
... Show MoreSpeech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreThis present paper aim at knowing the process of evaluating the training program that could be applied in Maysan Health office for it significance and importance in field of management and vocational staff preparations of high scientific experience in different fields of Health. The society of research includes staffs working in Maysan Health Office , of specialists , dentists, pharmacists, laboratories, nursing and administrators. Their number is 100 employees, the researcher has designed questionnaire by depending on "Kirkpatrick" for assessing the training . The researcher has used thorough survey and has entailed 90 questionnaire,
... Show Moreالحمد الله أولا واخرا وبعد .. إن الواقع الذي عايشه الناس في ظل دولة المسلمين منذ إقامة دولة الإسلام بعد بعثة الرسول الكريم (صلى الله عليه وسلم ) في المدينة ولأكثر من أربعة عشر قرنا نرى إنه عاش في كنف هذه الدولة الكبيرة من بلاد الصين شرقا وإلى وسط أوربا وجنوب فرنسا غربا العشرات من الملل و الأديان والأجناس وممن لا يدينون بالإسلام وهم كما تحفظ لهم دولة الإسلام منهم وعيشهم الرغيد فهم يمارسون شعائرهم وطقوسهم الديني
... Show More