These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the process of breaking the feedforward artificial neural network algorithm. Additionally, the result is computed from each ANN during the breaking up process, which is based on the breaking up of the artificial neural network algorithm into multiple ANNs based on the number of ANN layers, and therefore, each layer in the original artificial neural network algorithm is assessed. The best layers are chosen for the crossover phase after the breakage process, while the other layers go through the mutation process. The output of this generation is then determined by combining the artificial neural networks into a single ANN; the outcome is then checked to see if the process needs to create a new generation. The system performed well and produced accurate findings when it was used with data taken from the Vicon Robot system, which was primarily designed to record human behaviors based on three coordinates and classify them as either normal or aggressive.
Evaluation of Dot. ELISA test for Diagnosis Visceral Leishmaniasis in Infected Children
Free Space Optical (FSO) technology offers highly directional, high bandwidth communication channels. This technology can provide fiber-like data rate over short distances. In order to improve security associated with data transmission in FSO networks, a secure communication method based on chaotic technique is presented. In this paper, we have turned our focus on a specific class of piece wise linear one-dimensional chaotic maps. Simulation results indicate that this approach has the advantage of possessing excellent correlation property. In this paper we examine the security vulnerabilities of single FSO links and propose a solution to this problem by implementing the chaotic signal generator “reconfigurable tent map”. As synchronizat
... Show MoreThis research presents experimental and theoretical investigation of 15 reinforced concrete spliced and nonspliced girder models. Splices of hooked dowels and cast in place joints, with or without strengthening steel plates were used. Post-tensioning had been used to enhance the splice strength for some spliced girders. The ANSYS computer program was used for analyzing the spliced and non-spliced girders. A nonlinear three dimensional element was used to represent all test girders. The experimental results have shown that for a single span girder using steel plate connectors in the splice zone has given a sufficient continuity to resist flexural stresses in this region. The experimental results have shown that the deflection of hooked do
... Show MoreThis study examined >140 relevant publications from the last few years (2018–2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending o
... Show MoreA computerized investigation has been carried out on the design of six electrodes electrostatic lenses used in electron gun application. The Finite-Element Method (FEM) was used in the solution of Laplace equation for determine the axial potential distribution. The electron trajectory under zero magnification condition. The optical properties, spherical and chromatic aberrations, the object and image focal length and object and image position are calculated. A very good futures for the electron gun with these lenses have been computed where are a beam current of 8.7*10-7A can be supplied using cathode tip of radius 10nm.