In this research work, the novel polymer base on acrylamide N-methylene lactic and glycolic acid was synthesized and its structural performances were identified by the IR, 1H NMR and 13C NMR spectroscopic investigations. The influencing factors and kinetics of polymerization, viscosity performance were studied and quantum chemical calculations were used to identify the correlation between the structure and properties. It was determined that the polymerization rate of the examined monomers in an aqueous solution, in the presence of DAA, adheres to the standard rules for radical polymerization of acrylamide monomers in solution. An investigation into the pH solution's impact on the kinetics of radical polymerization of acrylamido-N-methylene glycolic and acrylamido-N-methylene lactic acids revealed an extreme dependence with a minimum in a neutral medium. It was found the linear correlation between pH and viscosity. The physical and chemical performance of this polymer depends on the structural parameters related the results of quantum chemical calculation. Biological tests conducted on polyacrylamido-N-methylene lactic acid indicated its potential as a plant growth stimulator. The polymeric form of lactic acid was found to enhance the growth of Dustlik variety wheat seedlings by 40% more efficiently than lactic acid alone.
New Schiff base, namely [2-(carboxy methylene-amino)-phenyl imino] acetic acid (L) and its some metal complexes [LCo.2H2O], [LNi.2H2O], [LCu].3H2O, [LCd.2H2O], [LHg.2H2O] and [LPb.2H2O], were reported and characterized by elemental analysis, metal content, spectroscopic methods, magnetic moments and conductivity measurements, it is found that the geometrical structures of these complexes are octahedral [Co(II), Ni(II), Cd(II), Hg(II), Pb(II) and square planar Cu(II).The complexes have been found to posses 1:1 (M:L) stoichiometry
In the present work, heterojunction diode detectors will be prepared using germanium wafers as a substrate material and 200 nm tin sulfide thickness will be evaporated by using thermal evaporation method as thin film on the substrate. Nd:YAG laser (λ=532 nm) with different energy densities (5.66 J/cm2 and 11.32 J/cm2) is used to diffuse the SnS inside the surface of the germanium samples with 10 laser shots in different environments (vacuum and distilled water). I-V characteristics in the dark illumination, C-V characteristics, transmission measurements, spectral responsivity and quantum efficiency were investigated at 300K. The C-V measurements have shown that the heterojunction were of abrupt type and the maximum value of build-in pot
... Show MoreI attended some amides non grassy substitutes such as acrylic compounds Amaid Electron Amaid and Alsinamamaid interaction unsaturated acids such as acrylic acid or Ketronk ????????? with primary amines Malkhtlfah of acrylic monomers Alamayd
In this study 100 samples were collected from infected children with acute and chronic tonsillitis who attended to Al-Yarmook Teaching Hospital (ENT consultation clinic) from 5/12/2013 to 1/3/2014. The result of laboratory culture was positive in 67 samples. Depending on their cultural, morphological and biochemical characterization of bacterial isolate of them were identified as (37.31%) belonged to Streptococcus pyogenes and the diagnosis is confirmed by the use of Remel Rapid STR System, (34.32%) belonged to S.parasanguinis, (11.94%) S.mitis, (11.94%) S.oralis and (4.47%) S.thoraltensis . Results confirmed that cup assay gave highest inhibition zone after 24 hrs compare with well diffusion methods for suspension of L.
... Show MoreThe polymeric complexes were obtained from the reaction of polymeric Schiff base.N-crotonyl-2-hydroxyphenylazomethine (HL), with divalent metals Pt (II), Cr (II). The modes of bonding and overall geometry of the complexes were determine through spectroscopic methods and compared with that reported from analogous monomeric ligand. This study revealed square planer geometry around the metal center for [Pt(L)Cl] and distorted octahedral geometry for Cr complex [Cr(L)Cl(H2O)2].
In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
An experimental of kinetics investigation of the solution free radical polymerization of isopropylacrylamide (IPAM) initiated with potassium persulfate (PPS) was conducted. The reactions were carried out at constant temperature of 60 °C in distilled water under unstirred and inert conditions. Using the well-known conversion vs. time technique, the effects of initiator and monomer concentration on the rate of polymerization (Rp) were investigated over a wide range. Under the conditions of our work, the orders 0.38 and 1.68 were found with respect to initiator and monomer, respectively. However, the rate of polymerization (Rp) is not straight forwardly corresponding monomer concentration. The value 46.11 kJ mol1 was determined as the o
... Show MoreIn this study, we conducted a series of polymerization studies of hexyl methacrylate in dimethyl sulfoxide with (0.1 - 0.4) mol dm-3 of monomer and (1 10-3 – 4 10-3) mol dm-3 of benzoyl peroxide as initiators at 70 °C. Using the well-known conversion vs. time technique, the effects of initiator and monomer concentration on the rate of polymerization (Rp) were studied. An initiator of order 0.35 was obtained in accordance with theory and a divergence from normal kinetics was detected with an order of 1.53 with respect to monomer concentration. The activation energy was determined to be (72.90) kJ mol-1, which does not correspond to the value of most thermally initiated m
... Show More