In this research work, the novel polymer base on acrylamide N-methylene lactic and glycolic acid was synthesized and its structural performances were identified by the IR, 1H NMR and 13C NMR spectroscopic investigations. The influencing factors and kinetics of polymerization, viscosity performance were studied and quantum chemical calculations were used to identify the correlation between the structure and properties. It was determined that the polymerization rate of the examined monomers in an aqueous solution, in the presence of DAA, adheres to the standard rules for radical polymerization of acrylamide monomers in solution. An investigation into the pH solution's impact on the kinetics of radical polymerization of acrylamido-N-methylene glycolic and acrylamido-N-methylene lactic acids revealed an extreme dependence with a minimum in a neutral medium. It was found the linear correlation between pH and viscosity. The physical and chemical performance of this polymer depends on the structural parameters related the results of quantum chemical calculation. Biological tests conducted on polyacrylamido-N-methylene lactic acid indicated its potential as a plant growth stimulator. The polymeric form of lactic acid was found to enhance the growth of Dustlik variety wheat seedlings by 40% more efficiently than lactic acid alone.
Due to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MoreA study was carried out to analysis of some heavy metals in nine different types of vinegar, belong to Grape, Apple, Synthetic White, Date, Hawthorn, Garlic, Cactus, Pomegranate and Ginger vinegar, which are locally available in Iraqi folk medicine markets. The concentrations of heavy metals in the studied samples including, Cr, Mg, Mn, Zn, Fe, Cd, Ni, Pb and Ag, were determining by using flame atomic absorption spectrophotometry. All data were subjected to statistical analysis by calculating accuracy, precision and correlation coefficient for each concentrations level. The results indicate that Ni was recorded the highest concentration in all studied samples except, Ginger and cactus vinegar, each one receded the highest concentration valu
... Show MoreAbstract Background: Kaposi’s sarcoma (KS) is an angioproliferative neoplastic disorder that occurs in different epidemiological forms. Human Herpesvirus type 8 (HHV-8) is established as a causative agent of KS that has been mentioned in textbooks and literature. In the last two decades, KS cases were up searched through many Iraqi medical researches which have been published, but unfortunately, none of which had confirmed this association. Objectives: To assess the association of latent nuclear antigen-1(LANA-1) of HHV-8 among KS patients with clinicopathological parameters and to evaluate if this procedure is valuable for diagnosing this disease through the first immunohistochemical study in Iraq. Methods: This is a clinico-immunohis
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
Here, a high sensitive method for biomarker identification according to nanostructure, using enzyme-linked immunosorbent assays (ELISAs), called Nano-ELISA, was presented. Different shapes of gold nanostructures (star and sphere; GNSs and GNPs) with a particle size of 40 nm for sphere particles were altered with a monoclonal antibody (Ab) as a detector Ab. To amplify the optical signal, gold nanostructures were employed as carriers of the signaling specific antibody against insulin growth factor binding protein- 3 (IGFBP-3). The substrate was catalytically oxidized by the Horseradish Peroxidase (HRP) conjugated gold nanostructure, and HRP also enhanced the optical signals, reflecting the amount of the targeting IGFBP-3. In comparison to t
... Show MoreBackground: Odontogenic tumors are a diverse group of lesions with a variety of clinical behavior and histopathologic subtypes, from hamartomatous and benign to malignant. The study aimed to examine the clinical and pathological features of odontogenic tumors in Baghdad over the last 11 years (2011–2021). Materials and Methods: The present retrospective study analyzed all formalin-fixed, paraffin-embedded tissue blocks of patients diagnosed with an odontogenic tumor that were retrieved from archives at a teaching hospital/College of Dentistry in Baghdad University, Iraq, between 2011 and 2021. The diagnosis of each case was confirmed by examining the hematoxylin and eosin stained sections by two expert pathologists. Data from pati
... Show More