In this study abundance and composition of zooplanktons in the Indus River Estuary was conducted to examine habitat characteristics and its impact on tiny organisms. Overall 30,656 individuals were identified and segregated into seven major groups including Copepods, Cnidarians, Decapods, Mollusk, Pisces, Amphipods and Chaetognaths. For better understanding they were further divided into eighteen planktonic categories. Among them Lucifer spp. comprises of 52.21% was the most abundant group with a peak appeared in March whereas Chaetognaths were rarely observed in the entire study period. Species diversity exhibited a mixed trend with the highest values (0.776) of dominance observed in spring (March). The results of Canonical Correspondence Analysis (CCA) indicate (60.2% and 39.79%) variability among first II axis. On this basis of the result it is obvious that water turbidity is trigger of the abundance and distribution whereas total dissolved solids (TDS) showed minimal influence deduced from CCA analysis.
Multivariate Non-Parametric control charts were used to monitoring the data that generated by using the simulation, whether they are within control limits or not. Since that non-parametric methods do not require any assumptions about the distribution of the data. This research aims to apply the multivariate non-parametric quality control methods, which are Multivariate Wilcoxon Signed-Rank ( ) , kernel principal component analysis (KPCA) and k-nearest neighbor ( −
Coaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artifi
... Show More