In this investigative endeavor, a novel concrete variety incorporating sulfur-2,4-dinitrophenylhydrazine modification was developed, and its diverse attributes were explored. This innovative concrete was produced using sulfur-2,4-dinitrophenylhydrazine modification and an array of components. The newly created sulfur-2,4-dinitrophenylhydrazine modifier was synthesized. The surface texture resulting from this modifier was examined using SEM and EDS techniques. The component ratios within concrete, chemical and physical traits derived from the sulfur-2,4-dinitrophenylhydrazine modifier, chemical and corrosion resistance of concrete, concrete stability against water absorption, concrete resilience against freezing, physical and mechanical properties, durability, elastic modulus, and thermal expansion coefficient of the examined sulfur-infused concrete were assessed. The acquired results also substantiated that the thermal expansion coefficient value for sulfur-2,4-dinitrophenylhydrazine modified concrete was 14.8×10-6/0C. The average deformation of the analyzed concrete was 0.0026-0.0051, indicating a superior deformation performance compared to conventional concretes. Concrete with smaller aggregate sizes exhibited greater density, specifically 2283 kg/m3. The concrete density decreased gradually with an increase in aggregate size. The stability of sulfur-2,4-dinitrophenylhydrazine modified concrete was remarkably high in various aggressive environments. EDS analysis revealed that carbon atoms constituted 56.63% of the total mass, while sulfur made up 33.91% of the total mass. The obtained SEM outcomes demonstrated that the sulfur-2,4-dinitrophenylhydrazine modifier exhibited a more porous structure, devoid of crystalline formations. The sulfur-2,4-dinitrophenylhydrazine modification experienced a single-stage thermal mass loss, with the mass loss events being endothermic in nature. The IR findings verified the presence of amino functional groups (connected melamine ring) and the establishment of polymer sulfur chains.
Consuming of by-product or waste materials in highway engineering is significant in the construction of new roads and/or in renovations of the existing ones. Pulverised Fuel ash (PFA), which is a by-product material of burning coal in power stations, is one of these materials that might be incorporated instead of mineral filler in hot asphalt mixtures.
Two types of surface course mixtures have been prepared one with conventional mineral filler i.e. ordinary Portland cement (OPC) while the second was with PFA. Several testings have been conducted to indicate the mechanical properties which were Marshall Stability and Indirect Tensile Strength tests. On the other hand, moisture damage and ageing have been evaluated
... Show MorePrevious experimental studies have suggested that hot mixed asphalt (HMA) concrete using hydrated lime (HL) to partially replace the conventional limestone dust filler at 2.5% by the total weight of all aggregates showed an optimum improvement on several key mechanical properties, fatigue life span and moisture susceptibility. However, so far, the knowledge of the thermal response of the modified asphalt concrete and thermal influence on the durability of the pavement constructed are still relatively limited but important to inform pavement design. This paper, at first, reports an experimental study of the tensile fatigue life of HMA concrete mixes designed for wearing layer application. Tests were conducted under three different temperatur
... Show MoreThis study was aimed to one of the most prevalent causes for endodontic treatment failure is the presence of Enterococcus faecalis bacterium within teeth root canals. To achieve successful treatment, it is so important to study E. faecalis behavior. The aim of study was to investigate biofilm production and antibiotic sensitivity of E. faecalis isolated from root canals. Results showed isolation of E. feacalis (65%) of samples, identified by specific gene by PCR technique. Most isolates were sensitive to Imipenem and resistant to Erythromycin, Clindamycin, Tetracycline and Trimethoprim. Strong biofilm production was detected among 29.5% of highest antibiotic resistant isolates. The results may indicate that infected root canals with E. feac
... Show MoreTodays, World is faced an energy crisis because of a continuous increasing the consumption of fuels due to intension demand for all types of vehicles. This study is one of the efforts dealing with reduce the weight of vehicles by using a new material of sandwich steel, which consists of two skin steel sheets with core of a polymer material. Resistance spot welding (RSW) can be easily implemented on metals; however a cupper shunt tool was designed to perform the resistance welding of sandwich steel with DP800 cover sheets to resolve a non-conductivity problem of a polymer core. Numerical simulations with SORPAS®3D were employed to test the weldability of this new material and supported by many practical experiments. In conclus
... Show MoreThe using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support
... Show Moreأخذت عينة من الزيت الطيار لنبات البابونج ( الشيح ) وأستعمل الزيت كمادة مضادة للبكتريا بطريقة الأنتشار في الوسط الزرعي ضد أجناس مختلفة من البكتريا وهي Klebsiella pneuomonia , Staphylococcus aureus , Staphylococcus epidermidis , proteus mirabilis , E. coli . أظهرت
This research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement. Consequently, HSNA can serve as an
... Show MoreThis study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This
... Show More